
2016 IEEE International Conference on Big Data (Big Data)

978-1-4673-9005-7/16/$31.00 ©2016 IEEE 472

Clockwise Compression for Trajectory Data under Road Network Constraints

Yudian Ji †, Yuda Zang ‡, Wuman Luo #, Xibo Zhou †, Ye Ding †, Lionel M. Ni#

†Hong Kong University of Science and Technology
‡Tsinghua University
#University of Macau

{yjiab, xzhouaa, valency}@ust.hk, zangyd13@mails.tsinghua.edu.cn, {wumanluo, ni}@umac.mo

Abstract—Big trajectory data introduces severe challenges
for data storage and communication. In this paper, we propose
a novel compression framework called Clockwise Compression
Framework (CCF) for big trajectory data compression under
road network constraints. In CCF, we design several new
methods: 1) a spatial compression algorithm called Enhanced
Clockwise Encoding (ECE), 2) a temporal compression algo-
rithm called Fitting-based Temporal Simplification (FTS), and
3) a dedicated querier that processes queries based on the
above spatial and temporal compression algorithms, without
fully decompressing the trajectroy data. By leveraging the
topological information of the road network, CCF is able to
perform both spatial compression and temporal compression in
on-line modes. We perform extensive experiments in a real big
trajectory dataset to verify both effectiveness and efficiency of
our methods. CCF shows promising performances in various
metrics and outperforms the state-of-the-art methods.

I. INTRODUCTION

The popularization of location-aware devices has gener-

ated large amounts of trajectory data. Typically, a spatio-

temporal trajectory consists of a series of location points and

timestamps, indicating the curve that a moving object travels.

Trajectory data is crucial in many real-world applications,

such as traffic control [1], driving behavior analysis [2],

motion prediction [3], etc. However, their ever-growing

volume causes the crisis of data storage and communication.

For example, the trajectory data collected from 59700 taxis

in Beijing within only 3 months has the size around 1TB.

Obviously, we need an effective trajectory compression

method that can largely reduce the size of a trajectory and

keep its utility. Ideally, a desirable trajectory compression

method have at least three qualities: good compression ratio,

high compression efficiency, and low query overhead. In this

paper, we focus on big trajectory data compression under

road network constraints.

Nowadays, trajectory data is often aligned to the road

network, which increases location accuracy and reduces

data redundancy [4] [5]. The spatial trajectory is therefore

mapped to a path in a road network. This preprocessing of

representation increases the difficulty of trajectory compres-

sion. Besides, on-line processing is becoming increasingly

essential in various modern applications, such as urban

sensing [6], traffic analyzing [1], etc. This calls for the

capabilities of on-line data compression and efficient data

access.
Unfortunately, existing methods cannot handle such prob-

lems effectively. So far, only a few methods have been

proposed for trajectory compression under road network

constraints [7] [8] [9] [10]. Most of them show limited

performances in compression ratio, compression efficiency

and query overhead. The state-of-the-art off-line compres-

sion framework, namely PRESS [10], achieves better overall

performance. However, it contains off-line computations in

its major steps, such as Huffman coding, which greatly

affects its on-line compression capacity. Although such al-

gorithms can be adapted to on-line version by using methods

like adaptive variation or directly using the pre-trained

Huffman tree, its performance drops abruptly. Moreover,

some auxiliary structures adopted in previous methods are

gigantic for complex road networks. The last-edge shortest

path table adopted in PRESS has the size of 110.6GB in

terms of the road network of Beijing.
In this paper, we present Clockwise Compression

Framework (CCF), a novel framework for trajectory com-

pression under road network constrains. Compared with

PRESS, CCF achieves a better compression performance.

Moreover, CCF can be easily adapted to compressing on-

line data streams. In CCF, we propose a topology-based

lossless compression algorithm called Enhanced Clockwise
Encoding (ECE) for spatial compression, and an error-

bounded line simplification algorithm called Fitting-based
Time Simplification (FTS) for temporal compression. We

study the performance of CCF extensively on a real big

trajectory dataset. Overall, we have made the following

contributions:

• We propose a compression framework, namely Clock-

wise Compression Framework (CCF), for map-matched

trajectory compression under road network constraints.

It contains a lossless spatial compression method and

an error-bounded temporal compression method. CCF

has strong overall compression performance and on-line

capability.

• We propose a novel dedicated encoding algorithm for

spatial information of the trajectory, namely Clockwise

Encoding, which creatively leverages the topological

information of road networks. CE compresses the tra-

jectory without acquiring the preknowledge of the input

473

data, which contributes to the efficiency and on-line

capability of the framework.

• We propose three enhancement algorithms, namely

Straight Path Enhancement, Frequent Follower En-

hancement and Hotspot Frequent Compressive Path

Enhancement to boost the compression power of Clock-

wise Encoding. We develop a method of mining fre-

quent paths dedicated for compression. By using the

FCP function in this paper, both frequencies and lengths

of the original paths will be taken into consideration

and a relation between the attributes of paths and the

actual compression performance is built.

• We test our methods through real-world trajectory data.

CCF achieves in average 25% higher compression ratio,

4.61 times faster compression efficiency and 43% query

speedup compared with the state-of-the-art methods

[10]. We also conduct an experiment in on-line scheme

to advocate the on-line capability of CCF.

The rest of the paper is organized as follows: Related work

of our research and important definitions will be given in

Section II and Section III respectively. Section IV introduces

the detailed algorithms of CCF. We provide a thorough

experiment study and performance comparison in Section V.

In Section VI, we give a conclusion of the paper.

II. RELATED WORK

Trajectory compression methods can be classified into

two categories based on the two kinds of problems they

solve, namely line simplification and map-matched compres-

sion. Line simplification methods focus on compressing raw

trajectory data represented by a sequence of GPS points,

while map-matched trajectory compression methods focus

on compressing the map-matched paths of trajectory data.

A. Line Simplification

Line simplification methods [11] [12] aim at using the

minimum number of points to approximate the whole curve

with least information loss. They usually keep an error

bound to decide whether a point can be compressed or not.

For trajectory data, line simplification methods leverage the

geometry characteristics to reserve the spatial information.

Line simplification methods are commonly used in many

applications like moving pattern study [13] and motion

prediction [3] where the shape of the curve is stressed.

B. Map-matched Trajectory Compression

Map-matched trajectory compression tries to find the

redundancy within trajectories by matching the trajectory

points to the digital map and then deal with the map-

matched data. With the extra information provided by digital

maps, some redundancies and patterns that cannot be derived

before will be discovered after map-matching. Moreover,

the trajectories are represented by paths rather than location

points. The above two facts allow many new methods to be

used when compressing map-matched trajectories.

Nonmaterial [9] tries to relate raw timestamps with points

on the road network. It will then use less timestamps on the

network to estimate the original ones with an error bound.

This introduces some information loss but compresses the

time information of map-matched trajectory. Routing Al-

gorithm [7] encodes map-matched trajectory data in two

ways. First, it skips a subset of consecutive road segments

if such subset is the shortest path from its beginning to its

end. Second, it skips a subset of consecutive road segments

if each pair consecutive road segments within the subset

follows the rule of least deviation. Map-matched Trajectory

Compression (MMTC) [8] replaces part of the map-matched

trajectory with paths with less intersections. PRESS [10]

applies shortest path compression [7] as their first step. Then,

it uses the global map-matched trajectory data to form a

prefix tree. It adpots a prefix tree to mine all the frequences

of the sub-trajectories with length less than or equal to 3.

At last, it treats each sub-trajectory as a node to conduct

Huffman Coding. PRESS also modifies a line simplification

algorithm to compress the timestamps.

III. DEFINITIONS

To make things clear, we state the important definitions

in this paper.

Definition 1. Road Segment: A road segment en is a

directed edge between two intersections vi and vj . There

is no other intersection on en.

Definition 2. Road Network: A road network RN is a

directed graph G(V,E), where V is the set of intersections

and E is the set of road segments.

Definition 3. Path: A path P = {e1, e2, e3......en} is a

sequence of consequtive road segments.

Definition 4. Map-matched Trajectory: Given a trajectory

T , a map-matched trajectory Tmatched is represented as

(Pmatched, t-), where Pmatched is the map-matched path of

T , and t- = (t, d) are the timestamps of T . d is the travelled

distance (dtraveled) from the starting point (pstart) of the

path to the perpendicular projection (pproject) onto the path

of the original location point p.

IV. METHODOLOGY

In this section, we go into detail with our compres-

sion methods. We first provide an overview of Clockwise

Compression Framework, then we introduce the specific

algorithms corresponding to each component.

A. CCF Overview

As shown in Figure 1, CCF consists of three components,

namely preprocessor, compression engine and query ex-

ecutor. Preprocessor applies a map-matching algorithm that

474

Map-matching

GPS Data

Digital Map

Map
Preprocessing
of Clockwise

Encoding

Enhanced Clockwise Encoding

Clockwise
Encoding

Session-based
Enhancement

Selector

Straight Path
Enhancement

Frequent Follower
Enhancement

Hotspot Frequent
Compressive Path

Enhancement

Fitting-based Time Simplification

Clockwise
processed

Map

Spatial Data

Temporal Data

Compressed Data Query
Processing

Preprocessor Compression Engine

Query
Processing

Query Executor

SSession- dbased
Enhancement

Selector

Figure 1: Overview of CCF

aligns raw trajectories with the road network, and also the

map-preprocessing stage prior to a spatial compression al-

gorithm, namely Clockwise Encoding. Compression engine

compresses the map-matched trajectory, where the spatial

and temporal information will be processed separately. After

compression, a query executor is provided to the users to

conduct queries on the compressed data.

CCF employs individual compression algorithms for spa-

tial and temporal dimensions of trajectory data. For tempo-

ral compression, CCF uses a stand-alone algorithm named

Fitting-based Temporal Simplification (FTS) . For spatial

compression, CCF utilizes a hybrid algorithm named En-
hanced Clockwise Encoding (ECE). As a hybrid compres-

sion algorithm, ECE is constructed by an encoding algorithm

called Clockwise Encoding (CE); three enhancement tech-

niques called Straight Path Enhancement (SPE), Frequent
Follower Enhancement (FFE) and Frequent Compressive
Path Enhancement (FCPE); and an ensemble strategy called

Session-based Enhancement Selector. The algorithms imple-

mented in CCF will be introduced in Section IV-B and IV-C.

B. Spatial Compression

This section introduces the algorithms for spatial com-

pression.

1) Clockwise Encoding: CE compresses the map-

matched path by leveraging the topological information of

the road network. In real-life road networks, the number of

out-going edges is limited for each intersection, and it is

usually small. We have conducted an experiment using the

digital map of Beijing. As shown in Table I, only 3 out

of 166304 intersections are connected to more than 6 out-

going road segments. All of the intersections have out-going

road segments less than 8. CE is designed from the above

observation. It takes an once-and-for-all preprocessing stage

on the digital map before the input is encoded. For each

intersection vn in the digital map, we encode every road

segment en that goes out of the intersection by clockwise

order, as shown in Figure 2. Since the number of out-

going road segments from one intersection is limited, we

Table I: Number of Out-going Road Segments From One

Intersection

No. of Road Segments <7 7 8 Total

No. of Intersections 166301 2 1 166304

c1
c2

c3

RX

RZ

RY

RW

Figure 2: Clockwise Code Generation

use a clockwise code cn, which is a binary symbol of

fixed-length bit string, to represent each road segment. For

each intersection, each out-going road segment is uniquely

represented by a clockwise code. Note that a same clockwise

code could represent different road segments for different

intersections. For those special intersections with the number

of out-going road segments that exceeds the limit, we

judge the intersection as two intersections with a virtual

link of distance 0. Thus, the two intersections will have

decreased number of out-going road segments. This step can

be repeated until the requirement is met.

During compression, CE first outputs the first road seg-

ment estart of the trajectory in the uncompressed form.

The first road segment indicates where the path starts, thus

cannot be clockwise encoded. After estart, the algorithm

finds the endpoint of it and searches in the clockwise code

table corresponding to the intersection ID of this endpoint,

where the clockwise code of the next road segment will

be found. The algorithm then copies the corresponding

clockwise code cn from the table to the output. This process

is repeated until the whole path is clockwise encoded. CE

yields a complexity of O(|e|), where |e| is the length of

475

e1

e2

e3

e4

e5

c2
c1 c2

c3

c1

c1c1

c1

c1 c1 c1

c1

c2

c2

c2
c1 c2

c1
c2

c2 c2

c1

c1

c1

Figure 3: An Example of Clockwise Encoding

the map-matched path. An example is shown in Figure 3.

The path {e1, e2, e3, e4, e5} can be compressed by CE as

{e1, c1, c2, c1, c1}. Since the ID of en is a global ID that

is unique among all the road segments, it is extremely

large compared with cn. Thus, the path can be compressed

into a form with less size. CE reserves the information of

sequential road segments one by one, which opens the gate

to further enhancements based on sub-paths.

2) Straight Path Enhancement: SPE is a variant of the

follower encoding [7]. It is based on the assumption that

drivers tend to follow a path with least direction deviation

when driving, since it is faster to take the straight way to the

destination. When a moving object travels in RN , it always

goes from a in-coming road segment ei to an out-going road

segment ej through an intersection vn. Thus, there is an

angular change Δθ from the in-coming road segment to the

out-going road segment. With different ej chosen, Δθ will

be different. The idea of SPE is to compress the path with

least Δθ at each vn it travels through. Such path will be

skipped directly since we can easily derive the path from

both ends.

In our case, it is difficult to locate the end-point of

a sub-path, since each road segment is derived from its

former ones. Instead of skipping a straight path directly,

we reserve a tuple < sSPE , δ >. sSPE is a special

binary code that indicates SPE is invoked, while δ is an

offset indicating the number of road segments compressed.

We also maintain an SPE table denoting a road segment

and its least deviation follower to boost the compression

efficiency, since such information can be retrieved once-and-

for-all from the road network only. Some encoding space

of clockwise codes is reserved for the special codes of the

enhancements, so there will be no difficulty distinguishing

special codes from the clockwise codes when decoding.

For example, a path {e6, e7, e8, e9, e10, e11, e12} contains a

sub-path {e7, e8, e9, e10} with least deviation change. It is

compressed to {e6, c7, c8, c9, c10, c11, c12} by CE. It can be

further enhanced to {e6, c7, < sSPE , δ >, c11, c12} by SPE.

The algorithm runs in O(|e|), where |e| is the length of the

e3

e4

e5e1

e2 e6

e7

e8P1
P2

P4

e5

e4

e8

FF Table
e3

e7

e4 e5

e4

e8

FF Table
e3

e7

e4

P3

Figure 4: Frequent Follower Table Generation

input path.

3) Frequent Follower Enhancement: Frequent Follower

Enchancement (FFE) is a variant of MFFC [14], which

addresses the relationship between a road segment and its

following road segments. The basic idea of FFE is to find

the most frequent following road segment for each road

segment, and utilize it for compression.

FFE first scans through the sampled data to find the most

frequent following road segment for each involved road

segment. The information is stored in a frequent follower

(FF) table. As shown in Figure 4, there are three paths

P1={e3, e4, e5}, P2={e3, e8}, P3={e3, e8}, P4={e7, e4, e5}.

After scanning all the paths, the FF table is shown in Figure

4. The FF of e3 is e8, since the frequency of {e3, e8}
is 2, the frequency of {e3, e4} is 1. The same rule goes

with e7 and e4. During compression, if the algorithm finds

a following road segment of a certain road segment is

an FF, the algorithm notes it down and keeps on looking

if the following road segment of this FF is also an FF.

Whenever there is no more concatenated FFs, the algorithm

compresses the path formed by concatenated FFs and returns

a tuple < sFFE , δ >. The special code sFFE is for

activating FFE, and δ indicates the number of road segments

compressed. Then, the algorithm records the road segment

following the last frequent follower on the compressed path,

and the continue the above process. FFE runs in O(|e|),
same as SPE. It should be noticed that a path formed by

frequent followers is different from a frequent path since

each frequent follower is generated regardless of prefix.

4) Hotspot Frequent Compressive Path Enhancement:
FCPE is a new algorithm proposed in this paper that

leverages the idea of frequent pattern mining in compression

scheme. It is known that pattern mining techniques [15] [16]

can be utilized to reduce the redundant information on tra-

jectory data. In terms of compression, pattern mining should

not only focus on the frequencies of the sub paths, but also

the lengths, since both frequency and length influence the

performance of compression. Thus, we propose a function

Φ for finding Frequent Compressive Path (FCP) suitable for

compression. Both frequencies and lengths of the sub paths

are taken into consideration. Moreover, if we store the FCPs

476

Algorithm 1 Hot Intersection Detection and FCP Mining

Require: Trajectory dataset T (T1, T2, ..., Tn), Hotspot

threshold bHOT , Sub-path length bound blength, FCP

bound k.

Ensure: Hotspots vHOT and a set of corresponding FCPs

for every hotspot Pfinal.

1: vS ← Get Hot Intersections(T, bHOT)
2: for each v in vS do
3: Root(FP tree) ← (v, 0)
4: for each Ti in T do
5: sub path ← subTrajectory(Ti, v, blength)
6: Add(FP tree, sub path)

7: for node N in FP Tree do
8: if NumberOfChildren(N) = 0 or NumberOfChil-

dren (N) ≥ 2 then
9: CandidateSet ←

CandidateSet
⋃
(N,FCP function(N))

10: for 1 → k do
11: Sort(CandidateSet)
12: (N,FCP value) ← RemoveF irst(S)
13: PFCP ← PFCP

⋃
Path(v,N)

14: for (N ′, FCP function(N ′)) in

CandidateSet do
15: UpdatePrefix(N ′)
16: RemoveRedundantValue(FCP function(N ′))
17: Pfinal ← Pfinal

⋃
(v, PFCP);

into an universal table for compression, the long index of

FCPs will hinder the compression performance. Due to the

spatial locality of trajectories, FCPs can be stored relating to

an intersection, FCPs starting at different intersections can

share the same index with no conflict. FCPE utilizes a novel

concept called hotspot. A hotspot is an intersection where

the number of trajectories that pass through is larger than

a threshold bHOT . The frequent patterns starting at differ-

ent hotspots will be stored separately, which significantly

shortens the indexing overhead.

FCPE proceeds in two stages, FCP mining and FCP

compression. FCP mining proceeds as follows: Firstly, the

algorithm will scan through the sampled data to generate

hotspots. Whenever a trajectory travels through or starts at

an intersection, the frequency count of that intersection will

increase by 1. Hotspots are intersections with frequency

higher than a threshold bHOT . Secondly, we vary a tree-

based pattern mining method [17] to acquire the frequencies

and lengths of all the sub paths starting at each hotspot. The

sub paths rooting at the same hotspot will form a tree, where

the frequencies and the lengths of all the sub paths and their

shared prefixes can be mined. Though our FCP function can

deal with various lengths and frequencies of sub paths, to

bound the complexity of FPC mining, the lengths of sub

paths are restricted by a bound blength, which we set to 32.

Finally, an FCP value is calculated for each mined sub-path

by the FCP function Φ. The mined sub-paths are ranked by

the FCP values. Top k FCP are selected and stored in an

FCP table for each hotspot. We use pseudo code to provide

the details of FCP mining, as shown in Algorithm 1.

The generation of FCP function is illustrated as follows:

Consider a compression scheme C with average symbol

size sa for representing an individual road segment and the

size of the symbol that activates frequent path compression

sFCP . Suppose a parameter k is set to generate top k paths.

The lengths and the frequencies of paths are represented

as xn and cn, respectively, where n is the total number of

paths. We first present FCP function Φ by two parts, namely

decompression time contribution Φt and compression ratio

contribution Φs, as shown below:

Φ(cn, xn) = WsΦs(cn, xn) +WtΦt(cn, xn), (1)

where Ws is the weight of the compression ratio contribution

and Wt is the weight of the decompression time contribution.

In this paper, we focus on the compression ratio contribution

of FCPs, thus Ws is set to 1 and Wt is set to 0.

First, we discuss decompression time contribution Φt.

Frequent path mining based compression methods always

include indexing different selected paths, where we can

efficiently recover a whole path at once when such index

exists. This means the more road segments the paths have,

the more road segments there are to skip the individual

searching, reading and writing than usual. Thus, we can

calculate the total cost saved by storing a frequent path as:

Φt(cn, xn) = cn(xn − 1)η, (2)

where η is the actual cost of dealing with an individual road

segment.

After discussing Φt, we move on to compression ratio

contribution Φs. Recall the compression scheme C, where

the average size of symbols representing individual road

segments is sa and the size of the symbol that activates FCP

is sFCP . We can find that the longer the compressed path is,

the more space is saved by representing more road segments

using one FCP index. We can develop the compression ratio

contribution of compressing one path as follows:

Φs(cn, xn) = cn(saxn − sfcp − γ(k)), (3)

where γ(k) is the size of the symbol for indexing top k
FCPs. In our method, we use a binary fixed-length code to

index FCPs, so γ(k) = log2k. The physical meaning of Φs

is the storage space saved by compressing an FCP using the

compressed represenation of FCP with frequency cn.

The FCP fuction Φ is proposed by us. Next, we discuss
the determination of k. Since we use a fixed-size index
for indexing top k FCPs, a larger k may increase γ(k) for
every FCP in one table. Thus, the determination of k is a
considerable problem. For scenarios that introduce different
sizes of indexes for FCP, the influence of different k can be

477

well defined by Φ. Consider a fixed-size index for FCP, γ(k)
is decided by different k. Consider a fixed-size index as a
sequence of symbols, γ(k) will be influenced when we need
one more symbol to represent all FCPs as k increases by 1.
First, we want to know the size change ΔS of previous
compressed FCPs if k is increased by 1, which can be
expressed by the equation below:

ΔS =

{∑k
n=1 Φs(cn, xn)− Φ

′
s(cn, xn), γ(k + 1) = γ(k) + 1,

0, γ(k + 1) = γ(k),

where Φ
′
s is the new compression ratio conrtibution when

k = k + 1. By solving the equation above, we can get:

ΔS =

{∑k
n=1 cn, γ(k + 1) = γ(k) + 1,

0, γ(k + 1) = γ(k).

Thus, the condition of increasing k by 1 is:{∑k∗
n=k+1 Φs(cn, xn) >

∑k
n=1 cn, γ(k + 1) = γ(k) + 1,

none, γ(k + 1) = γ(k).

Since we use binary fixed-length representations for index-
ing k FCPs, we assume k varies among powers of two. The
condition now changes to:{∑k∗

n=k+1 Φs(cn, xn) >
∑k

n=1 cn, log2(k + 1) = log2(k) + 1,

none, log2(k + 1) = log2(k).

The FCP compression stage is similar to that of SPE and

FFE. When a hotspot is encountered during the compression

of CE, the algorithm will keep tracking the following sub

path from the hotspot to see if it matches any stored FCP.

If the sub path matches more than one FCP with different

length, the algorithm will choose the longer FCP to compress

the sub path. A tuple < sFCP , δ > will replace the original

data. sFCP is the special code for activating FCPE, while

the δ is the index number of the stored FCP. The complexity

of FCP compression is O(|e|), where |e| is the size of input.

5) Enhancements Coordination and Decompression: Af-

ter introducing our hybrid map-matched path compression

method, we discuss the coordination of ECE. As we have

mentioned previously, each algorithm has its own way of

functioning. In the real process, a logic called Session-

based Enhancement Selector is introduced to ensure the

coordination of these methods.

During the compression of ECE, CE will start compress-

ing road segments, while SPE and FFE both denote the first

road segment as datum point. The two enhancements will

greedily find the longest consecutive straight path or frequent

follower path. When one of them encounters a halt, i.e. no

more road segments could be added to the straight path or

frequent follower path beginning with the datum point, it will

check the situation of the other enhancement. If the other

one still continues, we will halt this enhancement and wait

for the other one to halt. After both of the enhancements

halts, ECE will select the one that compresses more edges.

We keep this logic so that two enhancements start and end

t

d B

C

O

F

NDTD
A

rA

Figure 5: An example of FTS

together to form a session. FCPE however, is different since

a hotspot may occur in the middle of a session. However, this

situation could be transfered to the situation of previous two

enhancements by ending the previous session and starting a

new session when a hotspot is spotted.

The decompression of ECE is from the starting road

segment to the end. We start deriving the road segments

from the first road segment. Since their clockwise codes

are embedded into the digital map, the decompresser can

easily find related en upon receiving clockwise codes. When

the special codes for SPE, FFE or FCPE are detected, we

are able to derive en in a reverse way of encoding of the

corresponding enhancements. The decompression yields a

complexity of O(|e|).
C. Temporal Compression

In this section, we introduce the temporal compression

algorithm, namely Fitting-based Time Simplification(FTS).

FTS is an improved algorithm based on BTC [10], which

treats the (t, d) tuples as points to form a curve and adopt a

line simplification algorithm to compress it. We adopt the er-

ror bounds presented in BTS, namely Network Synchronized

Time Distance (NSTD) and Time Synchronized Network

Distance (TSND) [10]. NSTD limits the error range of t,
and TSND limits the error range of d. In this paper, we

use TD and ND for short. We realize the improvement by

introducing an approach similar to linear fitting. Different

from previous line simplification algorithms that prune the

points within error bound, our algorithm tries to fit an

optimal line to represent the original curve. As shown in

Figure 5, with the same error bound TD and ND, pruning

method is not able to compress the curve {O,A,B,C} due

to the placements of the points, while fitting method can

compress the curve {O,A,B,C} to {O,F}
The compression procedure of FTS is as follows. We treat

the first point of the curve as anchor panchor. We define an

angular range roverall initialized as (0, π
2). Each next point

pn brings an angular range rn calculated by the error bounds,

as shown by A and rA in Figure 5. The compressed line

lc must fall into the angular range in order to compress

the corresponding points. Over a certain set of points, a

compressed line lc that can replace the points exists if the

478

angular ranges of the points have an overlap. Thus, each

time, we update the overall angular range by intersecting the

angular range rn of the current point with the former angular

range roverall. When a point px with an rx not intersecting

roverall is detected, we return the compressed line by storing

the anchor panchor and the slope sanchor calculated by the

final roverall. Then, the algorithm will anchor at the point

before p′. roverall is then initialized as (0, π
2). The process

starts again. The concatenated lc represented by panchor
and sanchor can produce an intersection in, which is not

necessarily a point in the original data. We use in in the

compressed curve. However, by calculating in, a part of the

compressed point may fall out of error bounded range due

to the partial change of lc. Consider two concatenated lc and

lc
′, we deal with the issue by comparing t of in(t, d) with

t′ of p(t′, d′), where p is the point estimated by lc. For the

case of in being at the left of the second anchor, if t > t′,
then no influence is introduced by in; if t < t′ for some p,

we will re-estimate the error of such points. This goes the

reverse way when in is at the right of the second anchor.

If the error exceeded TD or ND, instead of reserving in,

we keep an extra point in
′ together with the panchor

′ of lc
′

to avoid mistakes. in
′ is calculated using the point p(t, d)

before p′anchor, adapting its t to lc or d to lc according to

different sanchor of lc. The complexity of FTS is O(|t-|),
where |t-| is the number of the input timestamps.

D. Query Capability

As mentioned, a typical feature of map-matched trajectory

compression is the capability of supporting queries without

full decompression, thus decreasing the query overhead. In

this paper, we introduce three basic queries, which can be

extended to more complicated queries, namely whereat,
whenat and intersect. We will briefly demonstrate how our

methods deal with these queries, and study the performances

in Section V. We introduce the three queries as follows:

1 whereat: Given a trajectory T , a timestamp t as input,

the query returns a triple < en, d,ND >, where en is

the resulting road segment, d is the distance deviation

from the starting point of en indicating the specific

position, ND is the estimation error bound of the result.

2 whenat: Given a trajectory T , a position (x, y) on the

trajectory, the query returns a tuple < t, TD >, where

t is the resulting time of the given position, and TD is

the estimation error bound.

3 intersect: This is a boolean query that returns True
if a trajectroy T has intersected a convex polygon P
during a given time period (t1, t2).

To speed up the query process, we store some auxiliary

structures to support the queries. For each road segment

in the FF table of FFE, we store the real distances, the

destinations and the minimum bounding rectangles (MBR)

of the frequent follower paths with various lengths, up to

32. For SPE, we store similar structures. Also, we store the

real distances and MBRs of the FCPs into the FCP table,

and distance and MBRs for CE encoded road segments.

We will first illustrate how our query executer deal with

whereat queries. Given a whereat query and a corre-

sponding trajectory T . CCF will locate the timestamp t
using compressed temporal data by finding a closest pair

of compressed timestamps < t-α, t-β > that covers it. Using

(tα, dα) and (tβ , dβ), the estimated traveled distance de of

t will be fast retrieved. By adding up accumulative distance

da from the start of the compressed spatial trajectory, we

can derive the corresponding en and deviation distance d
when da reaches de. ND is simply the error bound ND we

use in FTS.

whenat queries are handled in a similar way. For a

given position (x, y) and a compressed trajectory T ′, the

query executer keeps adding up accumulative distance and

checking if (x, y) is on any part of the trajectory. CCF is

able to skip extracting compressed trajectory by comparing

MBRs with (x, y). Only when (x, y) is within an MBR that

we need to extract the corresponding MBR and find if (x, y)
is on any road segment inside. The distance da is found when

(x, y) is reached. Then, with da we get, the targeting time t
can be easily derived by the compressed temporal data. TD
is simply the TD in FTS.

To deal with intersect, we first derive the distance pair

(d1, d2) using the given timestamp pair (t1, t2). Then, we

are able to locate a compressed sub-trajectory T ∗ using the

given distance pair (d1, d2). After this step, we are able to

efficiently compare if any MBR in T ∗ intersects P . If so,

we further extract the original sub-trajectory corresponding

to the intersected MBR to see if the decompressed sub-

trajectory intersects P . If so, True is returned, otherwise

False is returned.

The auxiliary structures for query acceleration bring some

extra storage overhead. Since the size of the auxiliary

structures are bounded by the size of the road network,

they will not scale with input. These structures will only

provide extra storage of 173.7MB, 173.7MB, 106.4MB,

and 4.53MB, maximally. Under the circumstance of big

trajectory data compression, we consider the sizes of such

auxiliary structures tolerable to be ignored.

V. EXPERIMENT EVALUATION

We report the experimental performance of CCF in this

section.

A. Experiment Setup

We conduct experiments over the real trajectory data

produced by 33,137 taxis of Beijing. The road network

of Beijing has 226,237 road segments and 166,304 inter-

sections. The number of trajectories is 47486, the length

of trajectories sums up to 100,663,296 road segments. The

experiments are conducted using a desktop with Intel i7 CPU

and 64GB memory.

479

CCF PRESS LZMA2 ZIP

C
om

pr
es

si
on

 R
at

io

0

5

10

15

20

25

30

35

Figure 6: Compression Ra-

tio Of Spatial Compression

Error Bound: TD &ND (s, 40m)
0 100 200 300 400

C
om

pr
es

si
on

 R
at

io

0

20

40

60
CCF
PRESS

Figure 7: Compression Ra-

tio Of Temporal Compres-

sion

Error Bound: TD &ND (s, 40m)
0 100 200 300 400

C
om

pr
es

si
on

 R
at

io

5

10

15

20

25

30

35

40
CCF
PRESS

Figure 8: Compression Ra-

tio Of Overall Compression

Figure 9: Effective Ratio of

Different Proportions of Er-

ror Bounds

B. Metrics and Algorithms

We test CCF for its overall performance in terms of

compression ratio, compression time, and query overhead.

Compression ratio and compression time will be further

studied in both spatial and temporal dimension. Since query

performance involves both spatial and temporal compression

algorithms, we will not study them separately.

Beside the algorithms in CCF, we also implemented the

state-of-the-art compression algorithm, namely PRESS [10],

for comparison. Since the spatial compression algorithm of

CCF is lossless, we also test its performance against standard

lossless text compression algorithms, such as LZMA2 and

ZIP.

Before conducting the experiments, we use the map-

matching algorithm in [18] to map the raw trajectories on to

the road network. Thus, the input of our experiments is map-

matched trajectory, which is represented by a map-matched

path and a series of timestamps as defined in Section III. Due

to the accuracy and sampling rate of positioning devices,

the map-matched path can have some unconnected gaps

inside. Current methods link these gaps with shortest paths

for simplicity, which is not the real-life case, and it can

boost the performance of shortest path related methods. CCF

has a more stable performance since no shortest-path related

method is included, while other methods may experience a

drop in performance when a more reasonable route recovery

algorithm is designed.

C. Compression Ratio

In this section, we evaluate the compression ratio of the

proposed algorithms.

We first present the compression ratio of CCF’s spatial

compression algorithm, ECE. ECE is evaluated against the

spatial compression algorithm of PRESS, namely HSC, and

two other lossless text compression algorithms, LZMA2

and ZIP. The compression ratio of spatial compression is

defined as Po

Pc
, where Po is the size of original map-matched

spatial paths, and Pc is the size of the compressed paths.

The result is shown in Figure 6. ECE is the best among

the four methods. ECE has the compression ratio of 30.2.

PRESS achieves the second highest compression ratio of

24.5. Traditional text compression methods, namely LZMA2

and ZIP, achieve the compression ratio of 11.3 and 2,

respectively.

Before reporting temporal and overall compression ratio,

we conduct an experiment on the reasonable error-bound

selection. To test our algorithms over various error bounds,

we want TD and ND to have equivalent influence when com-

pressing data. During the update of angular range roverall
in FTS, a point pn will produce four candidate boundaries

of the angular range rn, using TD and ND. Then two

boundaries will be selected by rn. We want to know the pairs

of error bounds that make TD and ND range boundaries

equally selected. Thus, we test various combinations of TD

and ND and find the proportion of TD and ND that results

in close times of taking effect during angular range update.

Proportion is defined as ND
TD , and the axis TD is the value

of TD. For example, if TD = 10 and Proportion = 20,

it means TD = 10 and ND = 200. The effective ratio

is presented as cn
ct

, where cn and ct are the number of

times that boundaries generated by ND and TD take effect,

respectively. The experimental result is shown in Figure 9.

The effective ratio is close to 1 when the proportion is

around 40. This means both error bounds take effect evenly

when ND is 40 times the value of TD. Thus, we will adopt

this proportion for further experiments.

Now, we demonstrate the temporal and overall com-

pression ratio of CCF. The compression ratio for temporal

compression is defined as t-o
t-c

, where t-o is the size of original

timestamps, and t-c is the size of compressed timestamps. The

compression ratio for overall compression is defined as To

Tc
,

where To is the size of the original map-matched trajectories,

and Tc is the size of compressed trajectories. Since FTS is

error bounded, we test the temporal and overall compression

performance of CCF over various errror bounds. As shown

in Figure 7 and Figure 8, CCF outperforms PRESS in

various error bounds, both in temporal compression and

overall compression. In terms of temporal compression, CCF

outperforms PRESS steadily among different error bounds.

In terms of overall compression, the compression ratios of

CCF and PRESS are low when error bound is low. This is

because the poor temporal compression ratio under low error

bounds becomes the bottleneck of overall compression ratio.

Overall, CCF outperforms PRESS in terms of compression

ratio.

480

Temporal Spatial Overall

C
om

pr
es

si
on

 T
im

e
(s

)

0

300

600

900

1200
CCF
PRESS

Figure 10: Compression Ef-

ficiency Comparison

0 200 4000

2

4

6

Estimation Error (m)

Sp
ee

du
p

R
at

io

CCF PRESS

Figure 11: Query Perfor-

mance of whereat

0 200 4000

5

10

Estimation Error (s)

Sp
ee

du
p

R
at

io

CCF PRESS

Figure 12: Query Perfor-

mance of whenat

1 0.98 0.96 0.94 0.920

0.5

1

1.5

2

2.5

Accuracy

Sp
ee

du
p

R
at

io

CCF PRESS

Figure 13: Query Perfor-

mance of intersect

The compression of CCF requires some auxiliary struc-

tures, which are the extra part of CE preprocessed digital

map, SPE table, FF table and FCP table. We assume all the

auxiliary structures are built in advance and can be used

for a long time, with the assumption that the road network

and movement pattern of trajectories of a region won’t have

big changes rapidly. It should be noted that these structures

are static and do not scale with the input size. Actually, the

preprocessing of CE will only introduce an extra space of

3.9MB on the digital map maximally, while the SPE table,

FF table and FCP table have the size of only 1.8MB, 1.8MB

and 41MB, respectively. Thus, we consider such auxiliary

structures are tolerable.

D. Compression Efficiency

In this section, we evaluate the compression efficiency

of CCF. The compression efficiency of spatial compression,

temporal compression and overall compression are studied.

We evaluate the compression efficiency of CCF by the com-

pression time of it. We compare the compression efficiency

of CCF with PRESS.

The compression time of spatial compression, temporal

compression and overall compression of both CCF and

PRESS are shown in Figure 10. Since the compression

time of FTS and PRESS have no significant change among

different error bounds, we report a single value for temporal

compression when the error bound is 200 and 8000 for

TD and ND respectively. In terms of temporal compression

efficiency, CCF and PRESS achieve a close performance,

and the temporal compression time is significantly lower

than spatial comperssion time. CCF shows better perfor-

mance than PRESS in spatial compression efficiency, which

takes only 17.67% the time of PRESS. In terms of overall

compression efficiency, CCF is also better, which outper-

forms PRESS by 561%. The relatively lower performance

of PRESS is related to the auxiliary structures it reserves

for compression. The size of shortest path table scales fast

with the complexity of road networks. In terms of the digital

map of Beijing, the last-edge shortest path table can take up

110.6GB space. Such a big table will hinder the efficiency

and bring extra disk access time. The road network of

mega cities like Beijing also results in a more complicated

Huffman tree. Overall, CCF outperforms PRESS in terms of

compression efficiency.

E. Query Performance

In this section, we provide the experimental results re-

garding spatial temporal queries. An important feature of

trajectory compression is the capability of conducting query

on the compressed data without full decompression. As

for CCF, it can retrieve query results faster than that on

the uncompressed data with the help of query accelerating

auxiliary structures. We generate random queries of three

different types, namely whereat, whenat and intersect
to test the query efficiency of CCF. We report the perfor-

mance of whereat and whenat over different ND and TS,

respectively. The performance of intersect will be reported

by with different accuracies brought by TD and ND. We

use speedup ratio to denote the performance of CCF, which

is represented as to
tc

. tc is the time to process a query on

compressed data, while to is the time to process a query

on the original data. Still, we compare the performance

of CCF against PRESS. The higher the speedup ratio, the

faster the queries are. Due to the small size of CCF’s

query accelerating auxiliary structure, CCF fully supports

in-memory querying and requires no disk access time for

querying, while PRESS requires much I/O time due to the

gigantic size of its query accelerating structure, which will

dominate the query time since querying is a fast process.

For direct comparison of querying capability, we exclude

such time. The querying efficiency of PRESS will drop

significantly when such time is considered. The results of

whereat, whenat and intersect are shown in Figure 11

to Figure 13. We can see that CCF outperforms PRESS in

terms of whereat and whenat query. In terms of intersect,
the two approaches have a close performance. Such results

prove the utility of CCF.

F. On-line Compression

We conduct an experiment simulating on-line trajectory

compression. We maintain 1,000,000 trajectories with length

of 50 road segments to update their location information

in stream, with the time interval of 30s. Every 30s, each

trajectory updates 5 new road segments and a new timestamp

(In real-life case, the number of road segments may be

less, here we use 5 to test our capability). In on-line case,

CCF’s three enhancements may not finish in one update,

e.g. there are possible longer paths for FFE or FCPE. Thus,

we maintain buffers for enhancements and update the result

481

Table II: On-line Compression Performance

Method Spatial Compression Ratio Latency

CCF 29 0.6364

PRESS 22(extended time) N/A

of CE first. The verification of three enhancements can

be finished during the rest of the time interval. When a

coordinate session is complete and all enhancements finish

computing, the result can be updated immediately in the

next update. Even when not finished, the verified paths

by enhancements can be immediately updated when the

compressed data is occasionaly needed. We compare CCF

with PRESS. Both CCF and PRESS are trained using a

historical dataset with the size same as the size of the

data to be compressed. Since temporal compression ratio

is not influenced by on-line compression, we report the

on-line spatial compression ratio and latency for CCF and

PRESS, respectively. As shown in Table II, CCF uses only

0.6364 seconds to deal with each update, and the spatial

compression ratio is 29. However, due to the fact that the

gigantic shortest path table cannot be put into main memory

at once, together with other reasons like the visiting time of

the SP table and Huffman tree generated using a complex

road network, PRESS is unable to deal with an update in

time. We extend time until PRESS finish all the compression.

The spatial compression ratio is 22. The results prove the

on-line capability of CCF.

VI. CONCLUSION

In this paper, we propose CCF, a compression framework

for trajectories under road network constraints. CCF em-

ploys novel algorithms to compress the spatial and temporal

information of the trajectories. We test the performance of

CCF using real dataset. CCF outperforms the state-of-the-

art compression framework in terms of compression ratio,

compression efficiency and query overhead. Moreover, CCF

is able to compress on-line data streams. In the future, we

plan to extend our framework to a wider range of queries,

which makes the utility of the framework better.

VII. ACKNOWLEDGMENT

This research was supported in part by the University of

Macau Grant SRG2015-00050-FST, NSFC grant 61300031,

the National Key Basic Research and Development Program

of China (973) Grant 2014CB340303.

REFERENCES

[1] J. Owusu, F. Afukaar, and B. Prah, “Urban traffic speed
management: The use of gps/gis,” in Conference proceeding,
Shaping the Change XXIII FIG Congress Munich, Germany,
2006.

[2] J. Grengs, X. Wang, and L. Kostyniuk, “Using gps data to
understand driving behavior,” Journal of Urban Technology,
vol. 15, no. 2, pp. 33–53, 2008.

[3] C. Sung, D. Feldman, and D. Rus, “Trajectory clustering for
motion prediction,” in Intelligent Robots and Systems (IROS),
2012 IEEE/RSJ International Conference on. IEEE, 2012,
pp. 1547–1552.

[4] D. Bernstein and A. Kornhauser, “An introduction to map
matching for personal navigation assistants,” 1998.

[5] G. Wang and R. Zimmermann, “Eddy: an error-bounded
delay-bounded real-time map matching algorithm using hmm
and online viterbi decoder,” in Proceedings of the 22nd
ACM SIGSPATIAL International Conference on Advances in
Geographic Information Systems. ACM, 2014, pp. 33–42.

[6] M. Veloso, S. Phithakkitnukoon, and C. Bento, “Sensing
urban mobility with taxi flow,” in Proceedings of the 3rd ACM
SIGSPATIAL International Workshop on Location-Based So-
cial Networks. ACM, 2011, pp. 41–44.

[7] P. M. Lerin, D. Yamamoto, and N. Takahashi, “Encoding
network–constrained travel trajectories using routing algo-
rithms,” International Journal of Knowledge and Web Intel-
ligence, vol. 4, no. 1, pp. 34–49, 2013.

[8] G. Kellaris, N. Pelekis, and Y. Theodoridis, “Map-matched
trajectory compression,” Journal of Systems and Software,
vol. 86, no. 6, pp. 1566–1579, 2013.

[9] H. Cao and O. Wolfson, “Nonmaterialized motion informa-
tion in transport networks,” in Database Theory-ICDT 2005.
Springer, 2005, pp. 173–188.

[10] R. Song, W. Sun, B. Zheng, and Y. Zheng, “Press: A
novel framework of trajectory compression in road networks,”
Proceedings of the VLDB Endowment, vol. 7, no. 9, pp. 661–
672, 2014.

[11] S.-T. Wu and M. R. G. Marquez, “A non-self-intersection
douglas-peucker algorithm,” in Computer Graphics and Im-
age Processing, 2003. SIBGRAPI 2003. XVI Brazilian Sym-
posium on. IEEE, 2003, pp. 60–66.

[12] N. Meratnia and R. De By, “A new perspective on trajectory
compression techniques,” in Proc. ISPRS Commission II and
IV, WG II/5, II/6, IV/1 and IV/2 Joint Workshop Spatial, Tem-
poral and Multi-Dimensional Data Modelling and Analysis,
2003.

[13] J. Liu, K. Zhao, P. Sommer, S. Shang, B. Kusy, and R. Ju-
rdak, “Bounded quadrant system: Error-bounded trajectory
compression on the go,” in Data Engineering (ICDE), 2015
IEEE 31st International Conference on. IEEE, 2015, pp.
987–998.

[14] Y. Ji, H. Liu, X. Liu, Y. Ding, and W. Luo, “A comparison of
road-network-constrained trajectory compression methods,”
in IEEE International Conference on Parallel and Distributed
Systems. IEEE, 2016.

[15] W. Luo, H. Tan, L. Chen, and L. M. Ni, “Finding time period-
based most frequent path in big trajectory data,” in Proceed-
ings of the 2013 ACM SIGMOD International Conference on
Management of Data. ACM, 2013, pp. 713–724.

[16] J. Han, J. Pei, and Y. Yin, “Mining frequent patterns without
candidate generation,” in ACM Sigmod Record, vol. 29, no. 2.
ACM, 2000, pp. 1–12.

[17] J. Han, J. Pei, Y. Yin, and R. Mao, “Mining frequent pat-
terns without candidate generation: A frequent-pattern tree
approach,” Data mining and knowledge discovery, vol. 8,
no. 1, pp. 53–87, 2004.

[18] P. Newson and J. Krumm, “Hidden markov map matching
through noise and sparseness,” in Proceedings of the 17th
ACM SIGSPATIAL international conference on advances in
geographic information systems. ACM, 2009, pp. 336–343.

