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Abstract—Taxi fraud has become a serious problem in many
large cities, where passengers are overcharged by taxi drivers
in various ways. Researchers have developed a number of
methods to detect taxi frauds with the assumption that fraud-
ulent trips, among normal trips, are recorded by taximeters.
In this paper, different from the previous work, we identify
a new type of taxi fraud called unmetered taxi rides, where
taxi drivers carry passengers without activating the taximeters.
Since these fraudulent rides are not recorded by taximeters,
previous detection approaches cannot directly apply to them.
Hence, we propose a novel fraud detection system specifically
designed for unmetered taxi rides. Our system uses a learning
model to detect unmetered trajectory segments that are similar
to metered rides, and introduces a heuristic algorithm to
construct maximum fraudulent trajectories from the trajectory
dataset. We have conducted detailed experiments on real-world
datasets, and the results show that the proposed system can
detect unmetered taxi rides effectively and efficiently.
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I. INTRODUCTION

In modern cities, taxi service is an important part of the

public transportation system, providing convenience for our

daily life. However, in recent years, taxi fraud, in terms of

overcharging passengers, has become a serious problem in

many large cities, which causes complaints from passengers

and damages the reputation of taxi service.

There are many forms of taxi frauds, including: 1) detour

[1][2], where taxi drivers overcharge passengers by delib-

erately taking unnecessary detours; 2) taximeter tampering

[3], where taxi drivers tamper the taximeters so that they

record longer distances than the actual; and 3) passenger

denial [4], where taxi drivers refuse to deliver passengers to

their destinations due to various reasons. Many approaches

are proposed to detect these behaviors by utilizing these

properties.

In this paper, we identify another type of taxi fraud,

namely unmetered taxi rides, where taxi drivers carry

passengers without activating the taximeters. By having the

meter off, taxi drivers can overcharge passengers without

being recorded. Unmetered taxi rides are a common and

severe problem in large cities with complex traffic situations.

They hurt the quality of taxi service, break the consistency

of taxi pricing, and are usually difficult to track or regulate

by taxi companies because no meter record is collected for
these unmetered trips. Therefore, it is necessary to develop

a method to detect such type of fraud.

Unfortunately, existing approaches are often unsuitable for

detecting unmetered taxi rides because they assume that the

fraud trips are recorded by taximeters. A possible method

is to utilize the occupancy information collected from seat

sensors on taxis. However, the occupancy information is

inaccurate, which may be caused by aging or deliberate dam-

age of these sensors. For instance, a considerable number

of taxis that have metered records show vacant occupancy

status.

In this paper, we propose a novel taxi fraud detection

system specifically for unmetered taxi rides. The system

finds anomalous trajectories that are not recorded by the

taximeter but have driving behaviors similar to regular

metered trips by utilizing both the taxi trajectory data and

the taximeter records. The contributions of this paper lie in

the following aspects:

• We introduce a new type of taxi fraud called un-
metered taxi rides. Different from previous taxi frauds,

we aim to find anomalous taxi trajectories that are

similar to metered trips but not recorded by taximeters.

• We propose a learning model to predict the passenger

occupancy status of taxis from unmetered trajecto-

ries, and implement a heuristic algorithm to construct

anomalous unmetered trajectories.

• We evaluate our system on real-world taxi trajectory

data. The results show that our system is effective to

find unmetered taxi rides.

II. PRELIMINARIES

A. Problem Definition

Definition 1 (Tracing Record): A tracing record r of a

taxi is denoted as a tuple r = 〈id, t, p, o〉, where r(id) is

the taxi id, r(t) is the record time, r(p) is the location point

of the taxi at r(t), and r(o) is the occupancy status of the

taxi at r(t).
A location point is represented by its latitude and longi-

tude. The occupancy status is a boolean value, recorded as

1 if the taxi is occupied by a passenger and 0 if the taxi is

vacant.
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Definition 2 (Taximeter Record): A taximeter record m
of a metered trip is denoted as a tuple m = 〈id, st, et〉,
where m(id) is the taxi id, m(st) is the start time of the

metered trip, and m(et) is the end time of the metered trip.

Given a tracing record r and a set of taximeter records

M , we say r is metered if ∃m ∈ M where r(id) = m(id)
and m(st) ≤ r(t) ≤ m(et), and unmetered otherwise.

Definition 3 (Trajectory): A trajectory l of a taxi with

id tid is a sequence of tracing records denoted as l =
(r1, r2, · · · , rn), where ri(id) = tid for i = 1, · · · , n. We

denote ri ∈ l for i = 1, · · · , n and |l| = n.

For simplicity, we denote the taxi id of trajectory l as

l(id), where l(id) = ri(id) ∀ri ∈ l. Given the trajectory l,
a trajectory l′ = (rs, rs+1, · · · , rd) of consecutive tracing

records where 1 ≤ s < d ≤ |l| is called a sub-trajectory of

l = (r1, r2, · · · , rn), denoted as l′ ⊆ l.
Definition 4 (Fraud Trajectory): Given a trajectory l, we

say l is a fraud trajectory if r is unmetered and occupied

∀r ∈ l.
Since the occupancy status contained in real-world tra-

jectory datasets is usually imprecise, we need to predict the

occupancy for each tracing record before detecting fraud

trajectories.

Definition 5 (Occupancy Prediction Problem): Given a

set of trajectories L, for each tracing record r ∈ l where

l ∈ L, predict the value of r(o).
After detecting the occupied tracing records, our next

problem is to find the maximum fraud trajectories from the

unmetered trajectory set.

Definition 6 (Maximum Fraud Trajectory Problem):
Given a set of trajectories L, for each trajectory l ∈ L, find

a maximum fraud trajectory l′ where: 1) l′ ⊆ l, 2) l′ is a

fraud trajectory, and 3) |l′| ≥ |l′′|, ∀l′′ ⊆ l where l′′ is a

fraud trajectory.

In this paper, we solve both Problems 5 and 6.

B. Overview

Figure 1 shows the workflow of our taxi fraud detection

system. In the pre-processing phase, raw trajectories are

segmented into metered and unmetered trajectories based

on taximeter records. The metered trajectories are filtered

from the trajectory set, and the unmetered trajectories are

then map-matched into connected paths constrained to the

road network. In the feature extraction phase, the map-

matched unmetered trajectories are first fragmented into unit

segments with constant length. Then, a vector of features are

calculated for each unit segment, including spatial-temporal

features (such as average travel speed and arc-chord ratio)

and statistical features (such as transition frequency between

roads and cheating occurance of each taxi id). In the anomaly

detection phase, given the feature vector set extracted from

fragmented unmetered unit segments, we implement an

integrated predictor to detect the occupied instances. Af-

ter detecting the unit segments that are occupied but not
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Figure 1: The workflow of taxi fraud detection.

metered, a trajectory construction algorithm is performed to

heuristically form the longest fraud trajectories.

III. PRE-PROCESSING

A. Trajectory Filtering

Since we assume the taximeter records are accurate, the

first task is to obtain all the unmetered trajectories from

the trajectory set. Due to the difference of data formats

for these two dataset, we implement a matching method to

segment the trajectory dataset into metered and unmetered

trajectories. First, we sort all the taximeter records by

taxi ids. For each taxi id, we sort its taximeter records

by start time. Then, for each taxi id, we can obtain all

the metered and unmetered time periods. More specifi-

cally, for a sorted taximeter records of taxi id tid denoted

as (tid, st1, et1), (tid, st2, et2), · · · , (tid, stn, etn), the me-

tered time periods are (st1, et1), (st2, et2), · · · , (stn, etn),
whereas the unmetered time periods are (et1, st2),
(et2, st3), · · · , (etn−1, stn). Next, we obtain all the trajec-

tories for each taxi id, and locate each tracing record of the

trajectories into the matching time period. More specifically,

given a taxi id tid with its metered and unmetered time

periods obtained, and a trajectory l where l(id) = tid, the

matching time period for r ∈ l is (sti, eti), sti ≤ r(t) ≤ eti
or (eti, sti+1), eti ≤ r(t) ≤ sti+1. Finally, for each taxi

id and each of its unmetered time period, we fetch all the

tracing records located in it, and construct an unmetered

trajectory by sorting these records by time.

B. Map-matching

In practice, the location information of raw trajectories are

usually imprecise due to the measurement noise and sam-

pling errors. In order to extract spatial features from these

trajectories, we perform a map-matching task by aligning

the location points to the road networks. We use the Hidden

Markov Model (HMM)-based map-matching algorithm [5].

The algorithm builds a hidden Markov model for each map-

matching task, where a trajectory represents an observation

sequence, each location point is an observation, and each

candidate road segment is a hidden state. The algorithm

defines the emission and transition probabilities based on

distance information, and uses Viterbi algorithm to compute

the best path, which gives an inference of the correct road

segment for each location point. Each two consecutive match

points are connected by the shortest path between them

along the road network, which guarantees the connectivity

of the entire path.
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IV. FEATURE EXTRACTION

A. Trajectory Fragmentation

Given the set of unmetered trajectories, before we start to

extract features, it is necessary to fragment these trajectories

into small pieces. This is because the lengths of unmetered

trajectories are significantly varied, and each unmetered

trajectory might be mixed with occupied and vacant tracing

records. We fragment the unmetered trajectories into unit

segments with a constant length, and extract the correspond-

ing map-matched path for each unit segment. In the follow-

ing steps of our system, the feature extraction, occupancy

detection and fraud trajectory construction are based on unit

segments rather than tracing records.

B. Feature Analysis

After fragmenting the unmetered trajectories into unit

segments, we extract features that have impact on occupancy.

In general, there are two types of features extracted by

our system, namely spatial-temporal features and statistical

features. The spatial-temporal features reflect the individ-

ual pattern of each trajectory, including average speed,

tortuosity, arc-chord and time; and the statistical features

reflect the statistical information of the trajectories, including

road transition frequency and taxi cheating frequency. We

introduce these features briefly:

1) Average Speed: Given a unit segment u =
(ri, · · · , rj) ⊂ l, the average speed vavg of u is:

vavg =
rdist(p′i, p

′
j)

rj(t)− ri(t)
(1)

where p′i is the match point of ri, p
′
j is the match point of

rj , and rdist(p′i, p
′
j) is the driving distance along the map-

matched path P ′ of u from p′i to p′j .

2) Arc-chord Ratio: Given a unit segment u =
(ri, · · · , rj) ⊂ l, the arc-chord ratio τa of u is:

τa =
rdist(p′i, p

′
j)

cdist(p′i, p
′
j)

(2)

where p′i is the match point of ri, p
′
j is the match point of rj ,

rdist(p′i, p
′
j) is the driving distance along the map-matched

path P ′ of u from p′i to p′j , and cdist(p′i, p
′
j) is the great

circle distance between p′i and p′j .

3) Curvature: As described in section III-B, the map-

matched path is a sequence of road segments, thus the

path from p′i to p′j can be represented as a polyline

(d1, d2, · · · , dm) where each di represents a line segment.

The curvature τc of (d1, d2, · · · , dm) is:

τc =

∑m−1
k=1 (

∠(dk, dk+1)× π

180
× 1

cdist(dk)
)2

cdist(p′i, p
′
j)

(3)

where ∠(dk, dk+1) is the intersection angle of dk and dk+1

and cdist(dk) is the length of dk.

4) Time: We first split a day into a number of slots μt

with a constant period, and then flatten each spatial-temporal

feature into a vector based on the corresponding time slot.

More specifically, given a unit segment u = (ri, · · · , rj) and

a constant time period Δt, the index h of the corresponding

time slot for u is:

h =
max(ri(t), rj(t))

Δt
(4)

For each spatial-temporal feature f extracted from u, it is

flattened as fflat = 〈0, · · · , 0︸ ︷︷ ︸
h

, f, 0, · · · , 0︸ ︷︷ ︸
μt−h−1

〉, where μt is the

total number of time slots.

5) Road transition frequency: Given a map-matched path

P = (e1, e2, · · · , en), we say ei+1 is a follower of ei in P .

Given a set of map-matched path Pset and a road segment e,

we can obtain a set of followers Ef of e where ∀ef ∈ Ef ,

ef is a follower of e in at least one path in Pset. For each

follower ef ∈ Ef , the road transition frequency from e to ef
is Fr(e, ef ) = μef /μEf

, where μef is the number of times

when ef is a follower of e in a path P ∈ Pset, and μEf
is the

number of times when e has a follower in a path P ∈ Pset.

Given a unit segment u = (ri, · · · , rj) along with its map-

matched path P ′ = (es, es+1, · · · , et), the road transition

frequency of u is:

Fr(u) =

∑t−1
k=s Fr(ek, ek+1)

t− s+ 1
(5)

In order to distinguish the road transition frequency for

occupied and vacant unit segments, we measure the road

transition frequency on Pset of occupied and vacant unit

segments, respectively. The road transition frequency for

occupied and vacant unit segments are denoted as Fro(u)
and Frv(u), receptively.

6) Taxi cheating frequency: Given a taxi id tid and a set

of its unmetered unit segments, the taxi cheating frequency

of tid is:

Fr(tid) =
μo

μv
(6)

where μo is the number of occupied unit segments, and μv

is the number of vacant unit segments.

V. ANOMALY DETECTION

A. Occupancy Detection

In this paper, we develop an integrated predictor by

utilizing the features introduced in Section IV-B to detect

the occupied segments from the set of fragmented unmetered

unit segments. First, we build a stochastic gradient descent

(SGD) model on each transformed spatial-temporal feature

to make a preliminary prediction of occupancy. Then, we

integrate the normalized likelihoods of the prediction results
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from each SGD model. Formally, given an instance u and a

threshold λ, the occupancy of u is:

u(o) =

⎧⎪⎨
⎪⎩
1

1

n

n∑
k=1

Li ≥ λ

0 otherwise

(7)

where n is the number of utilized spatial-temporal features,

and Li is the likelihood of prediction result using the i-th
feature.

In our dataset, the percentage of occupied unmetered unit

segments out of the entire unmetered unit segments is less

than 5%. With such a skewed label distribution, it is easy

for a classification model to ignore the occupied labels and

predict all the instances as vacant. In order to solve this

problem, we implement a randomized training process. We

first divide the training set into occupied and vacant feature

sets, and extract statistical features on the entire occupied

and vacant sets, respectively. Then, we evenly partition the

occupied and vacant set into np groups, respectively. Since

there are only 5% occupied segments, the size of each vacant

group is 19 times as large as the size of each occupied

group. We further split each vacant group into 19 piles

with equal sizes. Thus, the entire training set is partitioned

into np occupied and 19 × np vacant piles. Next, in the

training phase, each time we randomly pick one occupied

and one vacant pile to form a temporal training set, build

the classification model, and use it to predict labels of

the remaining occupied and vacant groups. Since there are

19 × np × np combinations to form the temporal training

set, it is time-consuming to validate all the combinations.

To deal with this problem, we stop the cross-validation as

long as all the occupied set has been used at least once.

Finally, we use the trained model to predict the occupancy

labels of the test set.

B. Maximum Fraud Trajectory Construction

Since the occupied unit segments detected using our

model are discrete, we implement a heuristic method to con-

struct complete occupied unmetered sub-trajectories. Given

a sequence of unit segments U fragmented from trajectory

l, a set of unit segments Ut ⊂ U where each u ∈ Ut is

detected to be occupied, and a constant γ, our sub-trajectory

construction algorithm is shown in Algorithm 1.

The algorithm starts from each detected occupied unit

segment u ∈ Ut, and heuristically searches its preceding

(§5) and following (§10) unit segment in order, respectively.

For each target unit segment, if it is initially detected as

vacant, we utilize the road transition frequency to infer the

confidence of it being occupied (§6, 11). More specifically,

given a unit segment u, the confidence of u being occupied

is:

S(u) = (1 + Fro(u)− Frv(u))× L (u) (8)

Algorithm 1 Maximum Fraud Trajectory Construction.

Input: The sequence of unit segments U = (u1, · · · , un);
the set of occupied unit segments Ut =
{ui1 , ui2 , · · · , uik} where 1 ≤ i1 < i2 < · · · < ik ≤ n;

constant ε and γ
Output: The set of occupied trajectories Lt

1: Lt = ∅; Uo = [1 if ui ∈ Ut else 0 for ui ∈ U ]
2: for j = 1; j ≤ k; j ++ do
3: is = ij−1 + 1
4: it = ij+1 − 1
5: for q = ij − 1; q ≥ is; q −− do
6: if Uo[q] = 0 and S(uq) ≥ ε then
7: Uo[q] = 1
8: else
9: break

10: for q = ij + 1; q ≤ it; q ++ do
11: if Uo[q] = 0 and S(uq) ≥ ε then
12: Uo[q] = 1
13: else
14: break

15: l = ∅
16: for j = 1; j ≤ n; j ++ do
17: if Uo[q] = 1 then
18: l = l + {uj}
19: else
20: if |l| ≥ γ then
21: Lt = Lt + {l}
22: l = ∅
23: if |l| ≥ γ then
24: Lt = Lt + {l}
25: return Lt

where L (u) is the likelihood of occupancy prediction result

using our model. If S(u) exceeds a specified threshold ε,
it is inferred as occupied. If so, we continue the heuristic

search. The process terminates when the next unit segment

is already detected as occupied, or it is still inferred as

vacant (§8 − 9, §13 − 14). After checking all the detected

occupied unit segment u ∈ Ut, the algorithm connects all

the consecutive unit segments that are detected or inferred

as occupied (§15 − 24). For each connected unit segment,

if it is longer than the specified threshold γ (§20, §23), a

maximum fraud trajectory is constructed (§21, §24).
VI. EVALUATION

A. Experiment Setup

1) Experiment Environment: The experiments are con-

ducted on a server with Intel Core i5-4590 CPU and 16 GB

RAM. The operating system is Ubuntu 14.04, and the code

is written in Python 2.7.6.

2) Real World Dataset: We use a dataset collected from

a large city in China. The dataset contains 154 million taxi
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Figure 2: Effectiveness of integrated predictor and construction algorithm.

tracking records and 4 million taximeter records of 15,231

taxis for 26 days [6]. 69% of the taxi tracking records

are unmetered, and 5% of the unmetered taxi tracking

records are occupied. The road network used for map-

matching consists of 25,613 intersections and 36,451 road

segments. Since the occupancy status is inaccurate, we use

the information of metered trajectories to select reliable

occupancy labels. Given a set of metered trajectories L and

a taxi id tid, the reliability on occupancy of tid is defined as

R(tid) =
μoccupy

μall
, where μoccupy is the number of tracing

records ri ∈ L where ri(id) = tid and ri(o) = 1, and μall

is the number of tracing records ri ∈ L where ri(id) = tid.

We use the trajectories of taxis with reliability greater than

90% as ground truth.

3) Evaluation Metrics: We use precision to evaluate the

effectiveness of our occupancy detection model, which is

denoted as precision =
μtp

μp
, where μtp is the number of

occupied unit segments that are correctly detected, and μp

is the total number of unit segments detected as occupied.

We use recall to evaluate the effectiveness of our maxi-

mum fraud trajectory construction algorithm. Given a fraud-

ulent trajectory l′ ⊂ l and the corresponding maximum fraud

trajectory l′′ constructed by our algorithm, the recall of l′′

is defined as recall = |l′ ⋂ l′′|
|l′| , where |l′ ⋂ l′′| is the number

of unit segments contained in the intersection sub-trajectory

of l′ and l′′.

B. Experiment Results

In our experiments, we use the first thirteen days of

taxi tracking records and taximeter records as training set,

and the rest as test set. We partition the training set using

np = 10. In the occupancy detection phase, the features

we use includes average speed, arc-chord, curvature, and

taxi cheating frequency. As existing approaches on anomaly

detection [7][8][9][10][11][12][13] are unsuitable for de-

tecting unmetered taxi rides, the prediction models we use

for comparison include logistic regression (LR), stochastic

gradient descent (SGD), decision tree (DT), and multi-layer

perceptron (MLP). The default values of parameters are:

w = 1, Δt = 30 min, λ = 0.5, and γ = 0.5.

First, we compare the effectiveness of our integrated

predictor with the baseline prediction models under differ-

ent granularity of time interval for feature flattening. The

results are shown in Figure 2(a). Our integrated predictor

always achieves a much higher positive predictive value than

the baseline prediction models under different Δt, which

also shows the consistency of our integrated predictor. In

particular, the positive predictive value of our integrated

predictor is up to 85% when Δt is 30 minutes, whereas

some of the baseline prediction models result in less than

30%. Moreover, the positive predictive value of occupancy

detection decreases when the time Δt increases for all the

prediction models. This result shows the importance of time

for feature flattening.

Next, we further analyze the performance of our selected

features for occupancy detection. We conduct experiments

on our integrated predictor by utilizing: 1) each spatial-

temporal feature individually, compared with all features

together; and 2) each spatial-temporal feature multiplied by

taxi cheating frequency as a weight (referred to as trans-

formed features), compared with taxi cheating frequency as

an individual feature. All the features are flattened by time.

The results are shown in Figure 2(b). The performance of

spatial-temporal features without considering taxi cheating

frequency is low, and taxi cheating frequency is not effective

as an independent feature. However, the positive predictive

values of occupancy detection rise significantly if we treat

taxi cheating frequency as a weight and multiply it with each

spatial-temporal feature. Finally, our integrated predictor

achieves better performance than only considering each

individual one by taking all the features into modeling.

Last, we evaluate the effectiveness of our trajectory con-

struction algorithm with γ varied from 0.005 to 0.5. For the

fraudulent trajectory set constructed by each group of exper-

iments, we use the complementary cumulative probability

function (CCDF) curve to evaluate its recall distribution.

The results are shown in Figure 2(c). In general, the CCDF

curve of the recall distribution leans towards 100% when γ
increases. After γ reaches 0.5, the trajectory construction

algorithm achieves the best performance, and the CCDF

curve stays unchanged. Moreover, the results show that 81%

of the trajectories constructed by our algorithm achieve

over 75% recall, which indicates the effectiveness of our

algorithm.
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(a) Case 1 (b) Case 2

Figure 3: Examples illustrating the effectiveness of our taxi

fraud detection system.

C. Case Study

We conduct several case studies to exhibit the effective-

ness of our taxi fraud detection system. Figure 3 illustrates

two identical examples of the anomalous trajectories de-

tected by our system. In Figure 3(a), the taxi is driving from

the high-speed railway station to a suburban residential area.

In Figure 3(b), the taxi is driving from the port of entry

to an urban office area. Based on our investigations, these

trajectories are highly suspicious to be unmetered taxi rides

because of three reasons. First, these departure areas are

important traffic terminals. For most of the time, there are

crowds of people waiting in line to hire taxis, and regular

taxis also have to wait in line to pick up passengers. Due

to the inconvenience caused by congestion, it is not likely

for a vacant taxi to travel into these areas. Second, there are

huge demands of taxis in these departure areas, especially for

those citizens traveling between urban and suburban areas

every day. Since the profit of picking up passengers in these

areas are quite high, it is not likely for a taxi to leave for

urban or suburban areas without carrying passengers. Third,

these trajectories mainly travel through expressways or main

roads. It is efficient and fast to choose these routes for an

occupied taxi to deliver passengers, but not effective for a

vacant taxi to hunt for passengers. Hence, it is not likely for

a vacant taxi to travel along these trajectories. In conclusion,

these examples demonstrate that our system is effective in

finding unmetered taxi rides with convincing evidences.

VII. CONCLUSION

In this paper, we study a new type of taxi fraud called

unmetered taxi fraud, where taxi drivers carry passen-

gers without activating the taximeters. Existing approaches

are not suitable for our problem because: 1) unmetered

fraudulent trips are not recorded by taximeters, and 2) the

occupancy information collected from seat sensors on taxis

is inaccurate. Therefore, we propose a novel taxi fraud

detection system specifically for unmetered taxi frauds. The

basic idea of our approach is to find anomalous trajectories

that are not recorded by the taximeter but have driving

behaviors similar to regular occupied trips. We first propose

a learning model to capture the different driving behaviors of

taxis when they are occupied or vacant, and then implement

a heuristic algorithm to construct unmetered fraudulent

trajectories by utilizing trajectory dataset and taximeter

records. We conduct intensive experiments on real trajectory

data. The results show that our proposed system achieves a

satisfactory performance.
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