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Abstract. Due to the inaccuracy of GPS devices, the location error of
raw GPS points can be up to several hundred meters. Many applica-
tions using GPS-based vehicle location data require map-matching to
pre-process GPS points by aligning them to a road network. However,
existing map-matching algorithms can be limited in accuracy due to
various factors including low sampling rates, abnormal GPS points, and
dense road networks. In this paper, we propose the design and imple-
mentation of HIMM, an HMM-based Interactive Map-Matching system
that produces accurate map-matching results through human interac-
tion. The main idea is to involve human annotations in the matching
process of some elaborately selected error-prone points and to let the
system automatically adjust the matching of the remaining points. We
use both real-world and synthetic datasets to evaluate the system. The
results show that HIMM can significantly reduce human annotation costs
comparing to the baseline methods.
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1 Introduction

With the ubiquity of location sensing technologies in a wide range of location-
based devices such as vehicle GPS navigators and mobile phones, large amounts
of trajectory data have been collected from different sources. These data have
been utilized by various location-based services such as route recommenda-
tion, traffic control, and location-based social networks. A trajectory consists
of a sequence of location points with latitudes, longitudes, and time-stamps.
In practice, the location information of a trajectory are imprecise due to mea-
surement noises and sampling errors [5]. It is therefore necessary to perform
map-matching [5] by aligning the observed location points to the road networks
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in a digital map so that these position data can be sufficiently accurate for
trajectory-based applications.

The fundamental difficulty of map-matching is that raw trajectory data typ-
ically do not consist the actual paths of moving objects, especially when the
location information is collected passively. Without the ground truth, it is diffi-
cult to train or evaluate any map-matching algorithms. Hence, in order to collect
the ground truth, it is necessary to involve human contributions such as driving
a vehicle along the road network and collecting the raw trajectory data along
with the corresponding path manually. However, the cost of such methods is
quite high. Hence, in this paper, we propose an interactive system called HIMM
to process the raw trajectories to reduce the cost of generating the ground truth.

The main process of the system is to interactively select raw trajectory points
for human annotators to match, and the challenge is in how to facilitate the inter-
active map-matching process. A näıve approach would be to simply throw all
the sample points on a trajectory onto the road network, and then ask the anno-
tator to drag each point to the correct road segment. However, it is tedious and
at times challenging for the annotator to find a proper candidate road segment
for each point of the trajectory. A more effective and user-friendly approach
would be the following: (1) generate an initial path using certain map-matching
algorithms, and display the path on the digital map along with the original
trajectory; (2) ask the annotator to drag each mismatched point to the correct
road segment. Furthermore, given the feedbacks of an annotator, the interactive
system could keep updating the path in display after each human annotation.
Unfortunately, to the best of our knowledge, none of the existing map-matching
algorithms is able to utilize the feedbacks of annotators.

In this paper, we propose a novel interactive map-matching algorithm that
takes the feedbacks of annotators to improve the matching result. Although such
an interactive system can help an annotator to easily adjust a single point, the
total annotation cost of a trajectory may still be high, because in order to pick
and confirm the exact points that are mismatched, the annotator may check a
large portion of the points, which could be up to the entire trajectory. As a result,
it is desirable that the interactive map-matching system provides some guidance
recommending potentially mismatched points for the annotator to check. Such a
strategy of posing queries to the annotator can reduce the annotation cost, which
is a key research issue in active learning and crowd-sourcing [12]. However, due
to the complexity of map-matching algorithms as well as the input trajectories
and the road network, existing query selection strategies are not suitable for the
interactive map-matching task. Therefore, we design efficient strategies to pose
queries for the interactive map-matching algorithm.

The contributions of this paper lie in the following aspects: (1) we propose
a novel system framework for interactive map-matching. It is a general frame-
work that combines human efforts with algorithms in an iterative manner to
achieve high map-matching accuracy; (2) we design a new HMM (Hidden Markov
Model)-based map-matching algorithm that can take an arbitrary number of
human annotations into consideration. To the best of our knowledge, this is the
first map-matching algorithm whose accuracy can be largely enhanced by the
input of human knowledge; (3) we propose different query selection strategies to
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effectively reduce the number of points that are required to be manually anno-
tated. Compared with traditional approaches, our query selection strategies can
reduce the number of queries by up to 44%; and (4) we use both real world and
synthetic trajectory datasets to perform experiments and analyze the empiri-
cal results. The results demonstrate that HIMM can significantly reduce human
annotation cost.

In the remainder of this paper, we first discuss related work in Sect. 2, and
then introduce the problem definitions and the framework of our system in
Sect. 3. The map-matching algorithms and the query selection strategies are
described in Sects. 4 and 5, respectively. We evaluate our system in Sect. 6, and
conclude the paper in Sect. 7.

2 Related Work

Map-Matching. Existing map-matching algorithms can be categorized into
three types: geometric algorithms, topological algorithms, and statistical algo-
rithms. Geometric algorithms [6] utilize spatial information to find local matches
for each point of the trajectory, thus the accuracy is highly affected by the mea-
surement noises. Topological algorithms [2] consider both the connectivity and
contiguity of the road network as well as the geometric information, but the
accuracy is reduced when the sampling rate of the trajectory is low. Statistical
algorithms make use of advanced statistical models such as Kalman filter [10],
particle filter [7], and HMM [8,9,14], to find the global optimal path for the
trajectory. These algorithms are less sensitive to measurement noise and sam-
pling rate, but the time complexity is high. To the best of our knowledge, none of
the existing map-matching algorithms takes feedbacks from human annotators to
improve accuracy or provides interactive mechanisms to facilitate map-matching.
More details are shown in Sect. 4.2.

Active Learning. Many learning tasks face a situation where unlabeled data
are easy to obtain but annotation is costly [12]. Active learning aims to minimize
the annotation cost by querying the most informative instances in the unlabeled
dataset. Although the scope of active learning is broad, most of the methods
are not suitable to the map-matching problem. For example, graph-based active
learning [1] focuses on using graph-based metrics to define the informativeness
of instances and querying the most informative instances. These approaches uti-
lize link information with node-specific features or partial network structures to
improve the classification accuracy. Different from graph-based active learning,
the points of a trajectory in this paper are not part of the graph, but have
certain mapping relations with the edges of the graph. Another example is the
active learning algorithms for structured prediction tasks [13], which ignore the
annotation cost of a single structured object, but query the instances with the
highest joint uncertainty or utility. However, the map-matching task for a single
trajectory is costly, which cannot be disregarded. To the best of our knowl-
edge, none of the existing active learning frameworks is designed for interactive
map-matching.
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3 Overview

3.1 Preliminary

Definition 1 (Road Segment). A road segment e is a directed polyline
between two road intersections vi and vj, and there is no other road intersection
on e. We denote vi ∈ e and vj ∈ e.

Definition 2 (Road Network). A road network is a weighted directed graph
G = (V,E), where V is a set of road intersections (or vertices), and E is a set
of road segments (or edges). The weight of a road segment is represented by its
properties.

A moving object is only allowed to travel on the road segments within the
road network.

Definition 3 (Trajectory). A trajectory T is a sequence of location points
sampled from the GPS device of a moving object, denoted as T = (p1, p2, · · · , pn).
We say pi ∈ T for i = 1, · · · , n and |T | = n.

A location point is represented by its latitude and longitude. The sampled
location points on a trajectory may not be the actual locations of the moving
object due to measurement inaccuracy.

Definition 4 (Path). A path P = (e1, e2, · · · , en) is a sequence of road seg-
ments where ei and ei+1 are connected for i = 1, 2, · · · , n−1. Two road segments
ei and ej are connected if there exists some intersection v such that v ∈ ei and
v ∈ ej.

Definition 5 (Match). Given a trajectory T and a road network G = (V,E),
a match mi,j = 〈pi, ej〉 where pi ∈ T and ej ∈ E specifies point pi was sampled
when the object was moving on road segment ej.

Definition 6 (Map-Matching Query). Given a trajectory T and a road
network G = (V,E), a map-matching query Q(T,G) finds a path P , such that
each point pi ∈ T is matched to exactly one road segment ej ∈ E. The resulting
set of matches is denoted as M = {〈p1, ej1〉, · · · , 〈pn, ejn〉}.
Definition 7 (Interactive Map-Matching Query). Given a trajectory T ,
a road network G = (V,E), and a set of matches M ′ conducted by the annotator,
an interactive map-matching query Q(T,G,M ′) finds a new path P , such that
each point pi ∈ T is matched to exactly one road segment ej ∈ E. The resulting
set of matches is denoted as M , where M ′ ⊆ M .

3.2 Framework

Figure 1 shows the workflow of HIMM, our interactive map-matching system.
First, an annotator requests a trajectory T to perform the map-matching task.
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Fig. 1. The workflow of HIMM.

If T is not map-matched before, HIMM automatically generates a path for T
using our interactive map-matching algorithm with M ′ = ∅. Then, HIMM plots
the trajectory T along with the path onto the digital map for the annotator to
review. In each iteration, if the annotator considers that the trajectory is not
correctly map-matched, an unlabeled point p is selected for the annotator to
review using our query selection strategy. If the annotator considers that p is
not correctly matched, the annotator marks a correct match for p; otherwise,
the annotator leaves the match as is. During the task, HIMM maintains a set of
matches M ′ that are specified by the annotator. After receiving the feedbacks
from the annotator, HIMM adds the match of p to M ′, and then performs an
interactive map-matching query with M ′ to complete the iteration. Finally, if
the annotator considers that all points are correctly map-matched, the map-
matching task for the trajectory T terminates.

HIMM contains two major components shown in Fig. 1: (1) an interactive
map-matching algorithm that takes the feedbacks of the annotator and auto-
matically adjusts the map-matching results; and (2) a query selection strategy
that recommends potentially mismatched points for the annotator to review.
The details are introduced in Sects. 4 and 5, respectively.

4 Interactive Map-Matching

4.1 Map-Matching Model

As shown in Fig. 2, we model a map-matching query as a hidden Markov model,
which is one of the most suitable models in this area [9,15]. Given a map-
matching query Q(T,G), trajectory T represents an observation sequence, where
each point pi ∈ T is an observation, and each candidate road segment ei,j ∈ E
represents a hidden state of pi. The total number of points of a trajectory is
denoted by n, where n = |T |, and the total number of hidden states of each
point pi is denoted by r, where r = |E|.

For each point pi, each state ei,j has an emission probability denoted as
Pr(ei,j |pi), which represents the likelihood of pi being observed if the vehicle
is on road segment ei,j . A higher emission probability is associated to pi if ei,j
is closer to pi, and the emission probability follows a Gaussian distribution of
positioning measurement noise [9]:
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Fig. 2. The map-matching model of HIMM.

Pr(ei,j |pi) =
1√
2πδ
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−
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2

⎛
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δ

⎞
⎠

2

(1)

where δ is the standard deviation of the positioning measurement noise, and
pdist(ei,j , pi) is the minimum perpendicular distance [3] between ei,j and pi.

For each pair of consecutive points (pi, pi+1), each pair of candidate states
(ei,ji , ei+1,ji+1) associated with them has a transition probability denoted as
Pr(ei,ji , ei+1,ji+1 |pi, pi+1), which represents the likelihood for a vehicle moving
from ei,j to ei+1,ji+1 . ei,ji and ei+1,ji+1 are more likely to be matched to pi and
pi+1, respectively, if the driving distance along ei,ji and ei+1,ji+1 from pi to pi+1

is closer to the great circle distance between pi and pi+1; and the transition
probability follows an exponential distribution:

Pr(ei,ji , ei+1,ji+1 |pi, pi+1) =
1
β

e
−

|cdist(pi, pi+1) − route(pi, pi+1)|
β (2)

where β is the rate parameter [9], cdist(pi, pi+1) is the great circle distance
between pi and pi+1, and route(pi, pi+1) is the driving distance along ei,ji and
ei+1,ji+1 from pi to pi+1.

4.2 Interactive Map-Matching Algorithm

Recall that a map-matching query Q(T,G) finds a path P , such that each
point pi ∈ T is matched to exactly one road segment ej ∈ E. Hence, the
objective of the map-matching algorithm is to find a sequence of hidden states
P = (e1,j1 , e2,j2 , · · · , en,jn) with the maximum joint probability Pr(P ), where:

Pr(P ) =
n∏

i=1

Pr(ei,ji |pi) ×
n−1∏

i=1

Pr(ei,ji , ei+1,ji+1 |pi, pi+1) (3)

Traditional hidden Markov model uses the Viterbi algorithm [11] to find the
optimal solution, denoted as P ∗. The Viterbi algorithm uses dynamic program-
ming to quickly find the state sequence that maximizes Pr(P ∗) in a recursive
manner. Hence, if the annotator specifies a match 〈pi, ei,k〉 where ei,k /∈ P ∗,
the Viterbi algorithm will ignore such feedback of the annotator. Therefore, the
traditional Viterbi algorithm cannot utilize the feedbacks of an annotator.
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We propose an interactive map-matching algorithm based on the Viterbi
algorithm to utilize the feedbacks of the annotator. The recursive formulation
(a.k.a., forward formulation [11]) is defined as:

C(i, j) =

⎧
⎪⎨

⎪⎩

O(i, j) 〈pi, ei,k〉 ∈ M ′, k = j

0 ∃〈pi, ei,k〉 ∈ M ′, k 	= j

Pr(ei,j |pi) × O(i, j) 	 ∃〈pi, ei,k〉 ∈ M ′
(4)

where 1 ≤ k ≤ r, and:

O(i, j) =

{
1 i = 1
max1≤k≤r C(i − 1, k) Pr(ei−1,k, ei,j |pi−1, pi) i > 1

(5)

In Formula (4), C(i, j) represents the highest value of the probabilities of
state sequences Pi = (e1,j1 , e2,j2 , · · · , ei,ji) for the first i observations Ti =
(p1, p2, · · · , pi) that have ei,j as the final state.

The recursion terminates when the last observation is processed. The opti-
mal state sequence that results in C(i, j) can be retrieved reversely from the
last hidden state that results in the maximum C(i, j) in each step through the
following formulation (a.k.a. backward formulation [11]):

ei,ji =

⎧
⎪⎨

⎪⎩

arg max
1≤j≤r

C(i, j) i = n

arg max
1≤j≤r

C(i + 1, j)
Pr(ei,j , ei+1,ji+1 |pi, pi+1)

1 ≤ i < n
(6)

Similar to the Viterbi algorithm, our interactive map-matching algorithm
uses dynamic programming [11] to quickly find the optimal state sequence in a
recursive manner. When the algorithm calculates the local optimal probability
C(i, j) for each hidden state ei,j as the final state for the first i observations
Ti = (p1, p2, · · · , pi), it first checks whether pi is manually matched by the
annotator. If so, the algorithm prunes all candidate hidden states of pi except ei,j ,
which is chosen by the annotator (i.e., 〈pi, ei,j〉 ∈ M ′) by modifying the emission
probability Pr(ei,j |pi) to 1, and all other emission probabilities Pr(ei,k|pi) to 0,
where 1 ≤ k ≤ r and k 	= j. Otherwise, the emission probability Pr(ei,j |pi) is set
via Formula (1). This way, all C(i, k) where 1 ≤ k ≤ r and k 	= j are 0, and the
backward formulation is guaranteed to select the state sequence that contains
ei,j with respect to C(i, j).

5 Query Selection Strategy

A good query selection strategy is critical to effectively guide the annotator by
picking the points that are likely to be mis-matched. In this section, we propose
four query selection strategies for comparison.
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5.1 Distance-Based Strategy

A commonly used query selection strategy in active learning is uncertainty sam-
pling. The basic idea is to query the instance whose label is the least certain.
In the map-matching problem, the most straight-forward factor that reflects the
uncertainty of a trajectory point pi is the distance distribution from pi to its
candidate road segment set Ei. Consider the example shown in Fig. 3(a), p1 and
p3 are clearly closer to e1 and e7, respectively. Thus, there is no need to check
p1 or p3 since their labels are almost certain. However, the distances between p2
and e2/e3/e6 are quite similar, which makes p2 the most uncertain point to be
labeled.

A general strategy of uncertainty measurement in information theory is Shan-
non entropy [12], which represents the average amount of information generated
by a probability distribution. As described in Sect. 4.1, the emission probability
distribution of the candidate state set Ei of pi reflects the distance distribution
from pi to each eij ∈ Ei. Thus, a distance-based strategy defines the uncertainty
H(pi) of pi as the Shannon entropy of the emission probability distribution of
the candidate state set Ei of pi. More specifically,

H(pi) = −
r∑

j=1

Pr(eij |pi) log(Pr(eij |pi)) (7)

where r is the number of candidate states of pi.
Based on Formula (7), given a trajectory T , in each iteration of the interactive

map-matching process, the next point recommended for the annotator is:

p′ = arg max
pi∈T

H(pi) (8)

After the annotator checks pi, the system modifies H(pi) to -∞, so that pi
will not be checked again until the interactive map-matching process terminates.
Hence, the time complexity of the distance-based strategy is O(1) with respect
to the number of points on the trajectory n.

5.2 Confidence-Based Strategy

In the distance-based strategy, the emission probability distribution of a trajec-
tory point pi only considers the local information of each point on the trajectory.
Consider the example shown in Fig. 3(b). The distances between p2 and e2/e4
are similar, whereas p3 is closer to e5 than e3. According to the distance-based
strategy, p2 has a higher uncertainty than p3. However, if we consider the entire
trajectory, p3 is the point that mostly likely to be checked, because the optimal
path differs a lot if p3 is matched to e3 or e5. On the other hand, p2 is not likely
to be matched to e4 considering the topological information ((e1, e4, e8, e5, e3) vs.
(e1, e2, e3)). Hence, in order to utilize the connectivity and contiguity of the road
segments along each trajectory point, we define the confidence Pr(〈pk, ek,l〉) for
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Fig. 3. Examples of the query selection strategy scenarios.

each candidate match 〈pk, ek,l〉 of pk, and evaluate the uncertainty of pk accord-
ing to the Shannon entropy of the confidence distribution among all candidate
matches for pk. More specifically, given a trajectory T and a match 〈pk, ek,l〉, we
generate a set of matches Mk,l and a path Pk,l by applying Q(T,G, {〈pk, ek,l〉})
using the interactive map-matching algorithm. Thus,

Pr(〈pk, ek,l〉) = Pr(Pk,l) =
n∏

i=1

Pr(ei,ji |pi) ×
n−1∏

i=1

Pr(ei,ji , ei+1,ji+1 |pi, pi+1) (9)

where each ei,ji ∈ Pk,l.
Based on Formula (9), the uncertainty H(pi) of pi is:

H(pi) = −
r∑

j=1

Pr(〈pi, ei,j〉) log(Pr(〈pi, ei,j〉)) (10)

where r is the number of candidate states of pi.
The next point recommended in each iteration is similar to the distance-based

strategy with the uncertainty computed in Formula (10). The time complexity
is O(1) with respect to the number of points on the trajectory n.

5.3 Dynamic Confidence-Based Strategy

In the confidence-based strategy, the confidence for each candidate match of a
point is defined under the assumption that all the other points of the trajectory
are not map-matched. Consider the example shown in Fig. 3(c), where p1, p2
and p3 are close to both e1 and e2. According to the confidence-based strategy,
the probabilities of the paths that pass either e1 or e2 are similar, thus the
uncertainty of p1, p2 and p3 are similar. If there is another point of the trajectory
that is wrongly matched but has a lower uncertainty, p1, p2 and p3 will all be
checked. However, if we have confirmed that p2 is matched to e2, the labels of
p1 and p3 are no longer uncertain. Hence, the confidence-based method cannot
prune the case when the match of a point is constrained by other points of the
trajectory.

To deal with such situations, we propose a dynamic confidence-based strat-
egy utilizing the set of labeled matches M ′ maintained by the system. More
specifically, given a trajectory T , a set of labeled matches M ′, and a match
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〈pk, ek,l〉, we generate a set of matches Mk,l and a path Pk,l by applying
Q(T,G,M ′ ∪ {〈pk, ek,l〉}) using the interactive map-matching algorithm. The
confidence measure Pr(〈pk, ek,l〉) is then defined as Formula (9), and the uncer-
tainty H(pi) of pi is defined as Formula (10).

In each iteration, since the set of labeled matches M ′ is updated, the uncer-
tainty of each point should be re-calculated via Formula (10). Hence, the time
complexity of the dynamic confidence-based strategy O(n × r), where n is the
number of points on the trajectory, and r is the number of hidden states of each
point. In practice, we restrict r in order to ensure high efficiency, which will be
explained in Sect. 6.1. The next point recommended in each iteration is similar
as the confidence-based strategy.

5.4 Stability-Based Strategy

Another strategy of uncertainty measurement is stability. Based on our obser-
vation, if the match of a point is frequently influenced by other points on the
trajectory (i.e., the match of this point is not stable), the uncertainty of this
point is often high. Consider the example shown in Fig. 3(d), p1 has a similar
probability to be matched to e1 or e2, and p5 has a similar probability to be
matched to e3 or e4. Therefore, the uncertainty of p1 and p5 are similar. How-
ever, since p6 is much closer to e3 while e7 is much closer to e4, there must be a
large measurement noise for either of these two points. Hence, the match of p5 is
very unstable if either p6 or p7 is removed from the trajectory. On the contrary,
p2, p3, p4 are all slightly closer to e1. Thus the match of p1 is much more stable
than p5. In this case, since p1 and p5 belong to the same trajectory, the priority
of checking p5 is higher than p1, because there is a higher probability that there
exists a major measurement noise for the points around p5.

In order to define the stability of a point, we first define the influence between
two points. Given a trajectory T = (p1, p2, · · · , pn) and two points pa, pb ∈ T ,
we first generate a set of matches M for T using our interactive map-matching
algorithm. Next we generate another trajectory Tb omitting pb, so that Tb =
(p1, p2, · · · , pb−1, pb+1, · · · , pn), and then similarly obtain Mb for Tb. Suppose
〈pa, ea〉 ∈ M , we denote that pa is influenced by pb as pa ≺ pb if and only if
〈pa, ea〉 /∈ Mb. Given a point pi ∈ T , the stability H(pi) of pi is:

S(pi) = |Dpi
| (11)

where Dpi
is the set of points that have no influence on pi. More specifically,

Dpi
= {p1, p2, ..., pk}, where pj ∈ T and pi 	≺ pj for all pj ∈ Dpi

.
Based on Formula (11), given a trajectory T , in each iteration of the inter-

active map-matching process, the next point recommended is:

p′ = arg min
pi∈T

S(pi) (12)

The stability-based strategy is efficient for selecting problematic points. How-
ever, since S(pi) is defined as a cardinality rather than a probability, it is possible
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that the points of a trajectory have the same S(pi). In this case, the stability-
based method is not able to determine an efficient order for these points. To deal
with this case, we dynamically switch to dynamic confidence-based strategy in
each iteration if two points have the same S(pi). Hence, the time complexity of
the stability-based strategy is between O(n) and O(n × r). Similar to dynamic
confidence-based strategy, we restrict r to ensure high efficiency.

6 Evaluation

6.1 Experiment Setup

Experiment Environment. The experiments are conducted on a Linux server
with a CPU of Intel Core i5-4590 and 8 GB memory. The operating system is
Ubuntu 14.04, and the code is written in Python 2.7.6.

Road Network. In our experiments, the road network data is provided by
the government of a large city in China and consisted of 25,613 intersections
and 36,451 road segments. There are no direction information thus all the road
segments are bi-directional.

Synthetic Trajectory Data. We build a trajectory generator to generate
synthetic trajectories with the following parameters: (1) the number of points np

on the trajectory, (2) the number of road segments ne covered by the trajectory,
and (3) the standard deviation δ of the positioning measurement noise.

The trajectory generator selects a starting point p1 ∈ e1 and an ending point
pnp

∈ ene
from an ne-hop random path P = (e1, e2, . . . , ene

), and then computes
the distance interval Δ between two consecutive points:

Δ =
route(p1, pnp

)
np − 1

(13)

where route(p1, pnp
) is the driving distance between p1 and pnp

. Starting from
p1, the trajectory generator derives the locations of the remaining points along
P such that route(p1, pi+1) = route(p1, pi) + Δ. Finally, the generator adds
a Gaussian distributed measurement noise to each point with δ so that T =
(δ(p1), δ(p2), . . . , δ(pnp

)).
In our experiments, we study the impact of different parameters including:

(1) the number of points on a trajectory; (2) the initial accuracy of a trajectory
in terms of the number of points that are matched to the correct road segments
by comparing Q(T,G, ∅) with P ; (3) the sampling rate of a trajectory which
is represented by ne given a fixed average driving speed; and 4) the standard
deviation of the measurement noise.

Real Trajectory Data. Our real world trajectory data contains 154 million
records of 15,231 vehicles for 26 days [4].
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Evaluation Metrics. To evaluate the effectiveness of our interactive map-
matching algorithm, we simulate the work flow of HIMM with the assumption
that each query annotation is correct and the time of trajectory review is triv-
ial. In order to reduce the response time, for each point on the trajectory, we
empirically reserve the top 10 nearest road segments as its candidate set. In our
experiments, it is sufficient to produce a high percentage of the correct matches
within this range. The correct road segment is also added into the candidate set
in case it is excluded.

We use two metrics to evaluate the efficiency of our query selection strategies:
(1) the response time for a query selection strategy; and (2) the execution time of
an interactive map-matching task for a single trajectory. In addition, we define
three metrics to evaluate the effectiveness of our query selection strategies. Given
a trajectory T along with the initial path generated by HIMM, the number of
mis-matched points is denoted as ζ(T ). After the map-matching task for T is
terminated, the total number of points that are reviewed by the annotator is
denoted as η(T ), and the total number of points that are corrected by the anno-
tator is denoted as ψ(T ). The three metrics are defined as follows: (1) cost ratio
CR = η(T )/|T | representing the review cost of the interactive map-matching task;
(2) selection accuracy SA = ψ(T )/η(T ) representing the accuracy of selecting
mis-matched points; and (3) true negative rate TNR = ψ(T )/ζ(T ) represent-
ing the ratio of the corrections conducted by the annotator rather than the
interactive map-matching algorithm. A lower CR indicates fewer iterations for a
map-matching task; a higher SA indicates a higher rate of selecting mis-matched
points; and a lower TNR indicates more points are automatically corrected by our
interactive map-matching algorithm.

6.2 Experiment Results

The experiments are conducted on both synthetic and real data. For each data
set, we apply all the query selection strategies proposed in this paper: distance-
based strategy (DIST), confidence-based strategy (CONF), dynamic confidence-
based strategy (D-CONF), and stability-based strategy (STAB); as well as two base-
lines: sequential strategy (SEQ) and random strategy (RAND), where the annotator
checks each point along the trajectory in a sequential and random order, respec-
tively.

Efficiency. In order to evaluate the scalability of our query selection strategies,
we conduct experiments on 8 groups of trajectories whose numbers of points
range from 10 to 80. The initial accuracy is fixed within 60–70%. The sampling
rate and measurement noise are fixed to 1.5 min and 101.04 m, respectively.

Figure 4(a) shows the impact of number of points on response time. Con-
sistent with the analysis in Sects. 5.3 and 5.4, the response time of D-CONF
and STAB increases linearly with the number of points. Figure 4(b) shows the
impact of number of points on TNR, where TNR drops at first when the num-
ber of points grows, but rises after the number of points reaches 50. Therefore,
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Fig. 4. Performance of query selection strategies.

HIMM achieves the best performance when the number of points on the query
selection trajectory is 50. Hence, for long trajectories, the most efficient strat-
egy is to divide them into sub-trajectories with 50 points each, and perform
an interactive map-matching task for each sub-trajectory. In order to show the
effectiveness of this dividing strategy, we generate a group of trajectories con-
sisting of 100 points each, and then compare the average execution time of the
interactive map-matching task for each trajectory with or without using the
dividing strategy. As a result, Fig. 4(c) shows that dividing long trajectories into
sub-trajectories significantly reduces the task time.

Effectiveness on Synthetic Data. To study the impact of initial accuracy, we
generate 5 groups of trajectories with 5 categories of initial accuracy: 50–60%,
60–70%, 70–80%, 80–90%, and 90–100%. The sampling rate and measurement
noise are fixed to 1.5 min and 101.04 m respectively. To study the impact of
sampling rate, we generate 3 groups of trajectories with 3 categories of sampling
rates: 0.5, 1.5, and 4.5 min. The initial accuracy and measurement noise are fixed
to 70–80% and 11.23 m respectively. To study the impact of measurement noise,
we generate 3 groups of trajectories with 3 categories of measurement noises:
11.23, 33.68, and 101.04 m. The initial accuracy and sampling rate are fixed to
60–70% and 0.5 min respectively.

The experiment results on synthetic trajectory data are shown in Fig. 5. In
general, the performance (in terms of CR and SA) of our query selection strategies
(DIST, CONF, D-CONF, and STAB) achieve a much higher efficiency than the two
baseline strategies (SEQ and RAND). Among our query selection strategies, the
performance of D-CONF is better than the two global strategies (DIST and CONF),
and STAB outperforms the other three strategies. Compared with the two baseline
strategies, CR reduced by our query selection strategies is up to 44%, and SA is
improved up to 24%.

Moreover, the TNR results in Fig. 5 show that the percentage of mis-matched
points that are automatically corrected by the interactive map-matching algo-
rithm during human annotation is up to 59%, which indicates a significant reduc-
tion of the annotation cost.
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Fig. 5. Effectiveness of query selection strategies on the synthetic trajectory data.

Next, we discuss the impact of each parameter on the performance of our
query selection strategies. Firstly, we observe that the gaps of CR and SA between
baseline strategies and our query selection strategies enlarge when initial accu-
racy grows. This indicates that our query selection strategies are more effective
in picking out wrongly matched points when the initial accuracy is high. Mean-
while, TNR decreases when the initial accuracy falls for all the query selection
strategies. This indicates that the ratio of the automatic corrections triggered
by human annotation rises when the initial accuracy is low, which also saves
the annotation cost. In conclusion, HIMM can reduce η(T ) no matter the initial
map-matching accuracy is low or high.

Secondly, we observe that a larger sampling rate or measurement noise will
hurt the performance both in CR and SA for all the query selection strategies.
However, compared with the baseline strategies, our query selection strategies
are more sensitive to sampling rate, but less sensitive to measurement noise. This
is because a larger sampling rate reduces the topological correlations between
points, thus the advantage of our query selection strategies is less effective. In
contrast, a larger measurement noise only increases the deviation of each point
within its local area rather than the topological information, thus the advan-
tage of our query selection strategies remains. As a result, our query selection
strategies outperform the baseline strategies in most of the cases.

Effectiveness on Real Data. Since the cost of a manual map-matching task
is very high, due to the limit of time, we manually processed 200 trajectories
with 50 points each. We use HIMM to annotate these trajectories, and record
the resulting paths as the ground truth. For the experiments on real trajectory
data, based on our statistics, the initial accuracy is 89% on average; the sampling
rate ranges from 30 s to 5 min; and the measurement noise is around 33.68 m.
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Fig. 6. Effectiveness of query selection strategies on the real trajectory data.

The experiment results on real trajectory data are shown in Fig. 6. It is clear
that the effectiveness of our query selection strategies are much higher than the
baseline strategies in terms of both CR and SA. Similar to the experiments on
synthetic trajectory data, the performance of STAB is the best, which reduces 29%
of CR and improves 21% of SA compared with baseline strategies. Moreover, 12%
mis-matched points are automatically corrected by the interactive map-matching
algorithm, which is a satisfactory result for such a high initial accuracy.

In general, the performance of HIMM on the real trajectory data is similar
to that on the synthetic trajectory data, which indicates that HIMM achieves a
satisfactory performance on a wide range of trajectories, and significantly reduces
the annotation cost.

7 Conclusion

In this paper, we propose an interactive map-matching system called HIMM for
the annotators to perform effective interactive map-matching tasks. We design
and implement an interactive map-matching algorithm that can be improved
by manual annotations, and propose four different query selection strategies
to reduce the costs of interactive map-matching tasks. We conduct intensive
experiments on both synthetic and real trajectory data. The results show that
our query selection strategies achieve a satisfactory performance. In this paper,
we only consider single annotators for interactive map-matching tasks, and it
could be further discussed when multiple annotators and crowd-sourcing are
introduced, which will be our future work.
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