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Abstract. Federated Learning (FL) is a well-known framework for dis-
tributed machine learning that enables mobile phones and IoT devices
to build a shared machine learning model via only transmitting model
parameters to preserve sensitive data. However, existing Non-IID FL
methods always assume data distribution of clients are under a single
imbalance scenario, which is nearly impossible in the real world. In this
work, we first investigate the performance of the existing FL methods
under double imbalance distribution. Then, we present a novel FL frame-
work, called Federated Learning with Gravitation Regulation (FedGR),
that can efficiently deal with the double imbalance distribution scenario.
Specifically, we design an unbalanced softmax to deal with the quantity
imbalance in a client by adjusting the forces of positive and negative
features adaptively. Furthermore, we propose a gravitation regularizer
to effectively tackle the label imbalance among clients by facilitating col-
laborations between clients. At the last, extensive experimental results
show that FedGR outperforms state-of-the-art methods on CIFAR-10,
CIFAR-100, and Fashion-MNIST real-world datasets. Our code is avail-
able at https://github.com/Guosy-wxy/FedGR.

Keywords: Federated learning · Double imbalance distribution ·
Non-IID · Softmax · Regularizer term

1 Introduction

Despite the success of deep learning in numerous fields [12,22], a data center
training model is typically required. In some real-world applications, individual
participant data cannot be located on the same device due to data privacy [1].
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Fig. 1. Different imbalance distribution scenarios on CIFAR-10 dataset. (a) label imbal-
ance, (b) quantity imbalance, (c) double imbalance.

Federated Learning (FL) [9,17,26] is designed for data privacy protection and
efficient distributed training.

The advent of FL enables different clients to collectively build a robust global
model without broadcasting local private data to the server. FL has demon-
strated its ability to facilitate real-world applications in several domains, e.g.,
natural language processing [7], credit card fraud detection [28] and medical
healthcare [6,25].

FL, however, also confronts the challenge of imbalance distribution [17,20].
The imbalance distribution of Non-IID data between clients brings serious per-
formance degradation problems for FL [14,27]. This performance degradation
is attributed to the phenomenon of client drift. Some recent works aim to deal
with this problem, e.g., FedProx [14] included l2 regularizer term to prevent local
models from deviating too far from the global model, PerFedAvg [4] utilized con-
trastive learning, and MOON [13] used multi-task learning for fast client local
adaptation to mitigate the impact of client drift. However, most existing studies
focus on single imbalance distribution [21].

In this work, we focus on double imbalance distribution scenario, which is
more common in the real world. We first define the imbalance distribution into
two categories:

1) Label imbalance. According to Fig. 1(a), we simulate this scenario with
10 clients on CIFAR-10 dataset. The majority of clients have part labels
of the whole, and client’s labels are mostly different from others, while the
quantity of each label in client is equal. For example, client 1 owns labels 4,
7, 9, but client 2 owns labels 0, 2, 8. Most recent works like FedProx [14],
SCAFFOLD [10] and FedNova [23] only care about label imbalance.

2) Quantity imbalance. We still use 10 clients on CIFAR-10 to describe this
imbalance distribution. Based on Fig. 1(b), each client owns an entire set of
labels, but the quantity of each label in client varies, i.e., client 1 has 10
labels, and the number of label 9 is about 450, but the number of label 0 and
1 is approximately 0.

In this study, we focus on double imbalance distribution like Fig. 1(c), each
client owns a partition of entire labels, and the quantity of each class in client
varies, e.g., client 1 only possesses labels 4, 7, 9, and each class’ sample number
is imbalanced. It is clear that the double imbalance distribution scenario is more
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Fig. 2. Comparison with existing FL methods under different imbalance distribution.

in line with reality than any single imbalance scenario. However, existing works
mostly omit the real scenario of double imbalance distribution scenario.

In order to investigate the performance of existing IID and Non-IID FL
algorithms for double imbalance scenario, we use client distribution as Fig. 1 to
design an observation experiment. We use TFCNN1 as client’s base model and
implement all compared FL methods with the same model for a fair compar-
ison. All performance results are expressed by accuracy of an average of five
times. The experiment results are summarized in Fig. 2. From the performance
results shown, we can find that no matter what FL algorithms gets a significant
performance loss on the double imbalance, compared to the left two scenes. For
example, the accuracy of FedAvg declines by about 16%. Apparently, the double
imbalance scenario brings a new challenge for existing FL algorithms, which is
the goal of our study tries to solve.

Motivated by the above observation experiment of double imbalance dis-
tribution, we propose a novel FL algorithm called Federated Learning with
Gravitation Regulation (FedGR) to deal with this problem. We define a novel
softmax function called unbalanced softmax to balance the importance of classes
under quantity imbalance in clients. In addition, we propose an efficient grav-
itation regularizer to deal with label imbalance among clients by encouraging
collaboration among clients. Combining these two components, we can correct
the gradient of traditional loss function of typical FL methods. The contributions
of this paper can be summarized as follows:

– We propose a novel federated learning method FedGR to effectively deal with
the performance degradation problem caused by double imbalance distribu-
tion scenario.

– We design an unbalanced softmax function, which can solve the problem of
unbalanced number of samples within the client by adjusting the forces of
positive and negative samples on classes.

1 https://www.tensorflow.org/tutorials/images/cnn.

https://www.tensorflow.org/tutorials/images/cnn
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– We propose a gravitation regularizer to alleviate the impact of label imbalance
between clients by introducing cross-client forces to encourage the collabora-
tion of different clients.

– Extensive experiments show that FedGR significantly outperforms the state-
of-the-art federated learning methods on several benchmark datasets under
double imbalance distribution scenario.

2 Related Work

Recently, federated learning on imbalance data distribution has drawn much
interest in machine learning research. Zhao et al. [27] shared a limited public
dataset across clients to relieve the degree of imbalance between various clients.
FedProx [14] introduced a proximal term to limit the dissimilarity between the
global model and local models. SCAFFOLD [10] used variance reduction to alle-
viate the effect of client drifting that causes weight divergence between the local
and global models. FedNova [23] changed the aggregation phase by allocating dif-
ferent number of local steps per round to different client participants which have
different computational capabilities to eliminate original objective inconsistency
problem caused by imbalance data. PerFedAvg [4] used meta-learning to learn
a new task quickly and effectively for quick local adaptation. Dinh et al. [20]
proposed pFedme, introducing l2-norm regularization to PerFedAvg which can
control the balance between personalization and generalization performance. Li
et al. [13] proposed MOON, which applied constrastive learning to make local
representation closer to the global model’s representation for better performance.
Huang et al. [8] proposed FedAMP, an attention-based mechanism that enforces
stronger pairwise collaboration amongst FL clients with similar data distribu-
tions. APFL [2] utilized model interpolation to adaptively control the mixture
of global and local model. Astraea [3] created the mediator to reschedule the
training of clients based on Kullback-Leibler divergence (KLD) of their data
distribution for label imbalance. FedGC [18] introduced a softmax-based regu-
larizer term to correct the loss function to be similar to the standard softmax in
conventional central learning. Ghosh et al. proposed IFCA [5], a clustering FL
framework that has many global models and assign each client to one of the K
clusters the global model of which achieves the lowest loss value on the client’s
data. FedRS [15] proposed a restricted softmax to limit the update of missing
classes’ parameters during the local procedure.

However, existing methods ignore considering double imbalance distribution
scenario, which are not applicable on real complicated FL scenarios.

3 FedGR

In this section, we will first explicitly introduce the whole structure of the pro-
posed FedGR. Then, we first define a novel softmax function to deal with quan-
tity imbalance in client. Third, we design a gravitation regularizer in server to
deal with label imbalance between clients. At the last we present the algorithm
of FedGR.
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Fig. 3. Framework of FedGR. FedGR contains two components: unbalanced softmax in
client and gravitation regularizer in server. Unbalanced Softmax aims to deal with the
quantity imbalance in client. Graviation Regularizer aims to tackle the label imbalance
among clients.

3.1 Framework of FedGR

On the basis of the aforementioned observation, we propose a method called
Federated Learning with Gravitation Regulation (FedGR) to address the prob-
lem of double imbalance distribution. As shown in Fig. 3, FedGR have two com-
ponents: clients and central server. In client, we design a novel Unbalanced Soft-
max to address quantity imbalance. Meanwhile, in server, we propose an efficient
regularizer term called Gravitation Regularizer to solve label imbalance cross
clients.

3.2 Unbalanced Softmax

In this subsection, we first promote the shortcoming of standard softmax faced
with quantity imbalance. Then, we define a simple but efficient softmax func-
tion called unbalanced softmax to adjust the importance of classes under quan-
tity imbalance situation. Finally, we analyze the benefits of unbalanced softmax
under quantity imbalance scenario.

According to traditional FL algorithms [14,17], the cross-entropy function of
client k can be formulated as:

Lk = −
∑

(xi,yi)∈Dk

log pk
i,yi

, (1)

where Lk means the loss function of client k, (xi, yi) denotes i-th sample in
training dataset, xi is a vector of training data, and yi is the label of i-th sample,
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Dk denotes the local data, pk
i,yi

is the probability of i-th samples belonging to yi

class. The probability is typically calculated by the standard softmax function
by normalizing each class’s score:

pk
i,yi

=
eu

kT

yi
vk
i

∑Ck

yj=1 e
uk

yj

Tvk
i

, (2)

where uk
yi

denotes the classification parameters of yi in client k, vk
i means the

extracted feature of i-th sample, Ck is the number of labels in client k.
However, the standard softmax may not work well when faced with quantity

imbalance because standard softmax gives each class the same weight. In fact,
some classes possess insufficient data samples, like the tail class in long-tailed
distribution. Hence, the classification parameters of head class will pull tail class
to an error feature region, so the performance of client’s model directly drops.

In order to solve quantity imbalance problem in client, we introduce a balance
factor γ in unbalanced softmax to balance the importance of different classes.
The unbalanced softmax can be formulated as:

p̂k
i,yi

=
eγk

yi
ukT

yi
vk
i

∑Ck

yj=1 e
γk
yj

uk
yj

Tvk
i

, (3)

where γk
yi

= Nk

Nk
yi

denotes as balance factor of each class, Nk means the number

of total samples in client k, and Nk
yi

means the number of label yi samples. We
utilize this balance factor to increase the importance of tail classes in client.

Theoretical Analysis. In order to show the efficient of the proposed unbal-
anced softmax, we analyze the benefits of it for quantity imbalance in clients as
below:

First, the loss function of client k in FL can be rewritten by replacing the
standard softmax as unbalanced softmax:

Lk = −
∑

(xi,yi)∈Dk

log p̂k
i,yi

= −
∑

(xi,yi)∈Dk

log
eγk

yi
uk

yi

T
vk
i

∑Ck

yj=1 e
γk
yj

uk
yj

Tvk
i

. (4)

Second, the computation of the gradient of ∂Lk

∂uk
yi

is formulated as below:

∂Lk

∂uyi

= −
N∑

i=1,y �=yi

γk
yi

p̂k
i,yi

vk
i +

N∑

i=1,y=yi

γk
yi

(
1 − p̂k

i,yi

)
vk

i . (5)

Final, we use gradient descent with learning rate η to update the classification
parameters of label yi and decompose this update process into the pushing and
pulling forces:

uk
yi

= uk
yi

−η

N∑

i=1,y �=yi

γk
y p̂k

i,yi
vk

i

︸ ︷︷ ︸
weighted pushing force

+ η

N∑

i=1,y=yi

γk
yi

(
1 − p̂k

i,yi

)
vk

i

︸ ︷︷ ︸
weighted pulling force

, (6)
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where the pulling force come from positive samples which have the same label
yi, while the pushing force is from negative samples whose labels are not yi. The
pulling force aims to pull the classification parameters close to the feature region
of positive samples, while the pushing force aims to pushing the classification
parameters far away from the feature region of negative samples.

From Eq. (6), it is obvious that pushing force and pulling force are weighted
by our balance factor γk

yi
. If yi is a tail class in client k, γk

yi
will be larger.

Consequently, pushing force and pulling force are more efficient, bringing the
classification parameters of tail class closer to their feature regions.

3.3 Gravitation Regularizer

In this subsection, we first analyze the drawbacks of traditional global optimiza-
tion objective in FL when faced with label imbalance. Then, we define a novel
regularizer called gravitation regularizer to encourage the collaboration of clients
under label imbalance situation. Final, we analyze the benefits of gravitation reg-
ularizer under label imbalance scenario.

In typical FL scenario, traditional FL considers to train a global model by
the following optimization objective:

min
u

F (u) �
K∑

k=1

αkLk, (7)

where K is the number of clients, αk is the aggregation weight of client k. We
define αk as Nk

N , where N is the number of total data samples. Then,
∑K

k=1 αk =
1. We denote the distributed optimization objective as global optimization.

However, the typical optimization objective in FL might cause performance
decrease when it only considers optimization within the client and ignores opti-
mization cross clients. For instance, client k1 has label 1, 2, 3 and client k2 has
label 2, 3, 4. In the client k1, the label 1 should be pushed far away from the
label 2 and label 3. On the other hand, the label 4 should be also pushed far
away from the label 2 and label 3 in client k2. Hence, the feature space of label 1
might incorrectly overlap to the feature space of label 4 if the objective function
ignores the cross-client optimization.

In order to introduce cross-client optimization into the objective function for
handling label imbalance, we design a new regularizer term of FedGR:

min
u

F (u) �
K∑

k=1

αkLk + λ · Gravitation-Reg(u), (8)

where λ is a hyper-parameter to control the weight of the gravitation regular-
ization term.
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The gravitation regularizer term contains two components: Attraction regu-
larizer and Repulsion regularizer, which are defined as follows:

Gravitation-Reg(u) = −∑K
k=1

∑Ck

yi=0 (log

∑
z �=k eu

zT

yi
uk′

yi

∑
z �=k

∑Cz

yj=1 e
uzT

yj
uk′

yi

︸ ︷︷ ︸
Attraction

+ log
eu

kT ′
yi

uk′
yi

eu
kT ′
yi

uk′
yi +

∑
z �=k

∑Cz

yj=1,j �=i e
uzT

yj
uk′

yi

)

︸ ︷︷ ︸
Repulsion

, (9)

where uk′
yi

,ukT ′
yi

suggests the gradient is set to be zero, which means the gra-
dient is not required for these vectors. Attraction regularizer aims to increase
similarity among the same labels’ classification parameters across clients, while
Repulsion regularizer aims to decrease similarity among different labels’ classifi-
cation parameters across clients. Hence, the Gravitation Regularizer can correct
the gradient of the optimization loss function with Attraction regularizer and
Repulsion regularizer.

Theoretical Analysis. In order to show how gravitation regularizer works,
we will theoretically discuss the effort of it for label imbalance among clients as
follows:

According to Eq. (8), optimization objective of FedGR equals the empirical
risk respect to the loss function Lk

G:

F (u) =
K∑

k=1

αkLk + λ · Gravitation-Reg(u)

= − 1
N

K∑

k=1

∑

(xi,yi)∈Dk

(
p̂k

i,yi
+ λ · Attraction(u) + λ · Repulsion(u)

)
(10)

= − 1
N

K∑

k=1

Lk
G.

To show that the added gravitation regularizer complement ignored cross-
client optimization, we correspondingly calculate the gradient of Lk

G to cross-

client classification parameters ∂Lk
G

∂uz
yi

and ∂Lk
G

∂uz
yj

of FedGR. Then, the related gra-

dient can be calculated as:

∂Lk
G

∂uz
yi

=

⎛

⎝
∑

z �=k e
uzT

yj
uk

yi

∑
z �=k

∑Cz

yj=1 e
uzT

yj
uk

yi

− 1

⎞

⎠uk
yi

, (11)
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∂Lk
G

∂uz
yj

=
e
uzT

yj
uk

yi

eu
kT
yi

uk
yi +

∑
z �=k

∑Cz

yj=1,j �=i e
uT

yj
uk

yi

uk
yi

, (j �= i) (12)

Due to the ease of convergence on local data, the features of local client data
are effectively trained on each client. Therefore, the distance between classifica-
tion parameters uk

yi
and features vk

i tends to be zero: uk
yi

→ vk
i . Hence, we can

get the following approximations:

∂Lk
G

∂uz
yi

≈
⎛

⎝
∑

z �=k eu
zT

j uk
yi

∑
z �=k

∑Cz

j=1 eu
zT
j uk

yi

− 1

⎞

⎠vk
i , (13)

∂Lk
G

∂uz
yj

≈ e
uzT

yj
uk

yi

eu
kT
yi

uk
yi +

∑
z �=k

∑Cz

yj=1,j �=i e
uT

yj
uk

yi

vk
i , (j �= i). (14)

According to Eq. (6), Eq. (13) and Eq. (14), the gradient of Lk
G to uz

yi
and

uz
yj

are similar to the pulling and pushing force of positive and negative samples
respectively. Different with Eq. (6) which only considers the pulling and pushing
force in client, the Eq. (13) and Eq. (14) introduce attraction and repulsion force
cross client.

Finally, the updated classification parameters of yi can be decomposed as
in-client force and cross-client gravitation force based on Eq. (6), Eq. (13) and
Eq. (14):

uz
yi,t+1 = uz

yi,t −η

Nz∑

i=1,y �=yi

γz
yi

p̂z
i,yi

vz
i,t

︸ ︷︷ ︸
in-client pushing force

+ η

Nz∑

i=1,y=yi

γz
yi

(
1 − p̂z

i,yi

)
vz

i,t

︸ ︷︷ ︸
in-client pulling force

− ηλ
K∑

k=1,k �=z

∑

(xi,yi)∈Dk

⎛

⎝
∑

z �=k eu
zT

j,t u
k
yi,t

∑
z �=k

∑Cz

j=1 eu
zT
j,t u

k
yi,t

− 1

⎞

⎠vk
i,t

︸ ︷︷ ︸
cross-client Attraction force

(15)

+ ηλ
K∑

k=1,k �=z

∑

(xi,yi)∈Dk

eu
zT

j,t u
k
yi,t

eu
kT
yi,t

uk
yi,t +

∑
z �=k

∑Cz

j=1,j �=i e
uT

ĵ,t
uk

yi,t

vk
i,t

︸ ︷︷ ︸
cross-client Repulsion force

.

where η is the learning rate of gradient descent, λ is the weight of regularizer
term. Related forces (in-client forces and cross-client forces) can be all formed
like βvk

i .
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Algorithm 1: FedGR
Input: Number of clients K; total communication rounds T ; learning rate η;

participate rate Q, regularizer weight λ; dataset of client k Dk.
Output: model parameters uk

T .

1 Server initialized u0;
2 for round t = 0, . . . , T − 1 do
3 Server select a subset of clients S(t) ← Q · K;

// Clients Update:

4 foreach participate client k ∈ S(t) do

5 download parameters from server uk
t ← ut;

6 update parameters uk
t+1 ← uk

t − η ∂Lk

∂uyi
(Eq. 6);

7 send uk
t+1 to central server;

8 end
// Server Update:

9 aggragate the parameters ũt+1 =
[
uk

t+1, . . . ,u
K
t+1

]T
;

10 update parameters ut+1 ← ũt+1 − λη∇ũt+1 Gravitation-Reg (ũt+1)
(Eq.15);

11 end

3.4 Training Process of FedGR

The overall process of the proposed FedGR algorithm is illustrated in Algo-
rithm1. There are two main processes: clients update (line 4–7) and server
update (line 9–10). In the process of clients update, each client starts their
local-update process on their datasets Dk in parallel. First, clients download the
parameters ut broadcast by central server in line 5. Then they update model
parameters uk

t by unbalanced softmax to obtain uk
t+1 from line 6. At last, client

k transfers updated parameters uk
t+1 to the central server in line 7. In the process

of server update, server updates the global model parameters ut+1 via gravita-
tion regularizer in line 9–10.

4 Experiments

In this section, we first introduce basic experiment settings. Second, we show the
ability of FedGR to deal with double imbalance distribution on several bench-
mark datasets, compared with start-of-the-art FL algorithms. Third, we make
a ablation study of each component in FedGR. Fourth, we analyze the selection
of hyper-parameter λ. Finally, we show the visualization comparisons conducted
on feature level.

4.1 Experimental Setup

Datasets. We conduct experiments on three real-world image datasets: CIFAR-
10, CIFAR-100 and Fashion-MNIST. The information of all datasets is listed in
Table 1.
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Table 1. Details of CIFAR-10, CIFAR-100 and Fashion-MNIST

Datasets Class Number Image Size Training Samples Test Samples

CIFAR-10 [11] 10 32×32 50,000 10,000

CIFAR100 [11] 100 32×32 50,000 10,000

Fashion-MNIST [24] 10 28×28 50,000 10,000

Table 2. Performance compared with state-of-the-art algorithms on CIFAR-10/100
dataset under double imbalance distribution. The best results are in bold, and the
secondary optimal results are mark as underline. CIFAR-10 (2) means each client owns
two labels, which is similar to CIFAR-10 (3), CIFAR-100 (20) and CIFAR-100 (30).

Algorithms CIFAR-10 (2) CIFAR-10 (3) CIFAR-100 (20) CIFAR-100 (30)

Acc(%) F1(%) Acc(%) F1(%) Acc(%) F1(%) Acc(%) F1(%)

FedAvg [17] 50.36 48.27 53.79 49.42 36.15 34.10 42.19 40.42

FedProx [14] 48.84 46.96 54.94 53.85 36.24 34.42 42.21 41.09

FedNova [23] 56.33 54.59 68.63 66.09 38.63 37.72 45.35 45.59

SCAFFOLD [10] 57.37 54.43 67.32 62.44 38.43 37.76 46.82 45.44

PerFedAvg [4] 44.67 42.56 54.87 53.73 35.98 34.76 40.14 40.33

pFedMe [20] 45.81 44.35 50.18 50.24 35.36 33.59 40.18 40.54

FedOpt [19] 62.37 60.68 70.63 69.79 42.37 40.68 49.63 49.79

MOON [13] 61.45 60.71 72.91 70.45 40.53 41.46 47.91 48.76

FedRS [15] 63.22 60.13 73.56 70.13 42.76 42.21 50.73 50.31

FedGC [18] 62.91 60.35 72.11 70.64 42.11 40.35 50.21 50.46

FedGR (ours) 67.84 65.62 77.86 75.32 45.44 44.85 53.16 53.32

(4.53↑) (4.91↑) (4.3↑) (4.68↑) (2.68↑) (2.64↑) (2.43↑) (2.86↑)

Data Segmentation. According to related works, we first followed [13] to
reshape the original balanced datasets to a quantity imbalance distribution,
which means the number of samples of each label on the client side follows a
power-law distribution. After that, we followed [14,15,17] to simulate the label
imbalance distribution by giving each client a fixed number of labels.

Models and Hardware Settings. We use TFCNN for CIFAR-10/100 and
Fashion-MNIST as the base model. All experiments are run by PyTorch on two
NVIDIA GeForce V100 GPUs. By default, we run 1000 communication rounds.
We set the number of total clients at 100 and a client participate ratio 10 % in each
round. For local optimization, we set the batch size is 64. For server optimization,
we set the weight of gravitation regularizer λ is 0.5. We use SGD with a learning
rate 0.1 and a weight decay of 5e−4 as the optimizer for all optimization process.

4.2 Performance Comparison with State-of-the-Art Algorithms

We compare FedGR with several imbalance-oriented methods like FedNova [23],
SCAFFOLD [10], PerFedAvg [4], pFedMe [20], FedOpt [19], MOON [13],
FedRS [15] and FedGC [18] under different degrees of double imbalance.
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Table 3. Performance compared with state-of-the-art algorithms on Fashion-MNIST
under double imbalance distribution. The best results are in bold, and the secondary
optimal results are mark as underline.

Algorithms Fashion-MNIST (2) Fashion-MNIST (3)

Accuracy(%) Macro-F1(%) Accuracy(%) Macro-F1(%)

FedAvg (2018) [17] 51.36 50.34 54.34 50.42

FedProx (2020) [14] 53.94 52.75 55.14 54.97

FedNova (2020) [23] 58.23 56.57 63.35 62.59

SCAFFOLD (2020) [10] 56.32 59.44 65.32 63.94

PerFedAvg (2020) [4] 48.87 45.73 56.91 55.41

pFedMe (2020) [20] 47.61 46.47 52.68 52.13

FedOpt (2021) [19] 60.72 60.78 68.93 68.78

MOON (2021) [13] 60.37 60.85 72.67 70.52

FedRS (2021) [15] 62.52 60.54 73.16 70.26

FedGC (2022) [18] 62.11 60.74 73.01 70.13

FedGR (ours) 65.62(3.1↑) 63.95(3.24↑) 76.11(2.95↑) 73.23(2.97↑)

Table 4. Communication rounds compared with state-of-art algorithms on CIFAR-10
and Fashion-MNIST under double imbalance distribution.

Algorithms CIFAR-10 (3) CIFAR-100 (30) Fahsion-MNIST (3)

#rounds speedup #rounds speedup #rounds speedup

FedAvg [17] 1000 1× 1000 1× 1000 1×
FedProx [14] 800 1.25× 850 1.17× 860 1.16×
FedNova [23] 600 1.67× 650 1.53× 540 1.85×
SCAFFOLD [10] 860 1.16× 830 1.20× 810 1.24×
FedOpt [19] 390 2.56× 450 2.22× 360 2.77×
FedRS [15] 350 2.56× 430 2.22× 340 2.77×
FedGC [18] 590 1.69× 650 1.53× 610 1.63×
FedGR(ours) 330 3.03× 390 2.56× 300 3.33×

For each dataset, we simulate two different double imbalance scenarios for exper-
imental generalizability. We use the average accuracy or F1 score of the last 50
rounds to represent the performance of one experiment. We also test all methods
five times to reduce random errors.

Table 2, 3 show the Top-1 accuracy and macro-F1 of compared baselines on
CIFAR-10, CIFAR-100 and Fashion-MINST datasets. It can be seen that our
proposed FedGR achieves the highest performance on both accuracy and macro-
F1 under different degrees of double imbalance. Compared with baselines, the
highest performance gain of FedGR appears on CIFAR-10 datasets where each
client only owns two labels (around 4.53%, 4.91% improvement on accuracy and
F1 for the secondary best results). pFedMe achieves the lowest performance in
most double imbalance scenarios, even lower than FedAvg. The possible reason
is that meta-learning is not useful for dealing with serious quantity imbalance
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Table 5. Ablation Study of FedGR.

Datasets Unbalanced Softmax Gravitation Regularizer FedGR

CIFAR-10 (3) � 71.34 ± 0.24

� 70.52 ± 0.41

� � 77.86 ± 0.35

Fashion-MNIST (3) � 71.13 ± 0.36

� 70.31 ± 0.38

� � 76.11 ± 0.21

in client. FedRS achieves the secondary best on most of the scenes because it
restricts the error update of missing classes, but the quantity imbalance is still
a challenge for it.

We also compare the convergence speed with baselines. We choose the accu-
racy after a thousand rounds of FedAvg as the standard, then compare the
number of communication rounds required by other methods to reach this accu-
racy. The results are shown in Table 4. We delete the PerFedAvg and pFedMe
in Table 4 due to these two methods cannot achieve the accuracy of FedAvg.
According to Table 4, FedGR can get the least communication rounds (from 300
to 390 rounds) to achieve FedAvg accuracy on all datasets, which is around two
times faster than FedAvg. The reason why FedGR needs fewer rounds is that the
gravitation regularizer encourages the effective collaboration of different clients
by cross-client forces, which is not considered by existing FL methods.

4.3 Ablation Study

In this subsection, we design an experiment on CIFAR-10 and Fashion-MNIST
to investigate the effect of each component of FedGR. According to Table 5,
when FedGR with only unbalanced softmax, the performance is still higher than
most existing FL methods because unbalanced softmax efficiently addresses the
quantity imbalance problem in client. Similarly, we also find that gravitation
regularizer of FedGR improves performance by enhancing the cross-client col-
laboration. In addition, the results show that the performance of FedGR with
unbalanced softmax and gravitation regularizer obtains a significant improve-
ment around 6% compared with FedGR with only unbalance softmax or gravi-
tation regularizer. Therefore, our proposed FedGR actually have the capacity to
handle the double imbalance distribution.

4.4 Parameter Analysis

One important hyper-parameter in FedGR is the weight of gravitation regular-
izer. We analyze the effect of λ. We evaluate its influence by experiments on
CIFAR-10 and Fashion-MNIST under different degrees of double imbalance. It
can be observed from Fig. 4 that FedGR gets the best performance when λ =
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Fig. 4. Performance comparison with different selection of λ on CIFAR-10 and Fashion-
MNIST under different degrees of double imbalance. (a) comparison on CIFAR-10, (b)
comparision on Fashion-MNIST.

Fig. 5. Visualization results on feature level with t-SNE. (a) Results acquired by
FedAvg, (b) Results acquired by FedGR.

0.5. When λ approaches 0, the influence of the gravitation regularizer is dimin-
ished, and only unbalanced softmax is effective. Consequently, FedGR tends to
face the label imbalance issue. When λ is quite large (near 1), the gravitation
regularizer harms the functioning of unbalanced softmax. Also, as the number
of labels a client owns increases, the influence of different choices of λ decreases
as a result of the label imbalance relief.

4.5 Visualization Results

We visualize the samples of CIFAR-10 dataset by t-SNE [16]. In Fig. 5, points in
different colors refer to the features of samples in different classes. Samples are
much closer within the same class cluster means better performance. It can be
seen that FedGR clearly reduces the distance between the features of samples
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with the same label. This suggests that FedGR is more successful in accurate
classification than FedAvg.

5 Conclusion

In this paper, we first show that existing FL algorithms face serious performance
drop problem under double imbalance distribution. Based on this observation,
we propose a novel FL algorithm called federated learning with gravitation reg-
ulation (FedGR) to deal with the problem of double imbalance distribution.
We design a simple but effective unbalanced softmax by introducing a balance
factor to balance the importance of classes for tackling quantity imbalance in
client. Moreover, we propose a novel gravitation regularizer to call for the forces
between clients for dealing with label imbalance among clients. Experiments have
shown that FedGR outperforms the state-of-the-art FL methods under double
imbalance distribution scenario.
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