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A B S T R A C T   

Cryptocurrency price forecasting plays an important role in financial markets. Traditional approaches face two 
challenges: (1) it is difficult to ascertain the influential factors related to price forecasting; and (2) due to the 24/ 
7 trading policy, cryptocurrencies’ prices face very large fluctuations, thus weakening the forecasting power of 
traditional models. To address these issues, we focus on Bitcoin and identify the influential factors related to its 
price forecasting from the perspective of underlying blockchain transactions. We then propose a price forecasting 
model WT-CATCN, which leverages Wavelet Transform (WT) and Casual Multi-Head Attention (CA) Temporal 
Convolutional Network (TCN), to forecast cryptocurrency prices. Our model can capture important positions of 
input sequences and model the correlations among different data features. Using real-world Bitcoin trading data, 
we test and compare WT-CATCN with other state-of-the-art price forecasting models. The experiment results 
show that our model improves the price forecasting performance by 25%.   

1. Introduction 

Cryptocurrency is a new type of digital asset that uses decentralized 
networks based on blockchain technology and cryptography to facili
tate, secure, and verify transactions. As a representative cryptocurrency, 
Bitcoin is based on blockchain technology and a payment system [1,2] 
that is decentralized and based on peer-to-peer transactions [3,4]. It has 
gained a lot of attention from worldwide businesses, consumers and 
investors because of the uniqueness of Bitcoin’s payment protocol and 
its growing popularity. In May 2015, the New York Stock Exchange 
launched a Bitcoin index (NYXBT). In December 2017, the market 
capitalization of all Bitcoins in the world surged to US $275 billion, with 
the Bitcoin price peaking at $19,500. Major retailers, such as Microsoft, 
Overstock, and AT&T, accept Bitcoin as a mode of payment. 

After the boom and bust of its price, Bitcoin has been recognized as 
an investment asset [3]. Due to its highly volatile nature, there is a need 
for good forecasting on Bitcoin prices to facilitate investment decisions 
[5,6]. A heated discussion has arisen in response to one question: what 
determines the monetary value of Bitcoin [4]? Finding the factors that 
influence Bitcoin’s monetary value is very important for both 

practitioners and researchers. Identifying proper price predictors helps 
investors to forecast future price fluctuations and estimate expected 
return [7]. Retailers and large corporations need to understand the trend 
of price movement before they decide to adopt Bitcoin as a payment 
method. Researchers have also shown great interest in Bitcoin and its 
underlying Blockchain technology. Bitcoin is viewed as a thriving Fin
Tech innovation that disrupts existing payment and monetary systems 
[7,3]. Thus, to better understand Bitcoin and facilitate its theory 
development, scholars need to identify the influential factors in the 
dispersion of new financial technologies, and Bitcoin in particular. 

When forecasting the Bitcoin price, it is natural to ask what factors 
should be taken into account. Though some factors (user comments, 
blockchain features, order book, etc.) have been leveraged and tested 
[8–11], previous studies usually depend on the researchers’ domain 
knowledge and did not consider the features from the transactions in the 
blockchain. Various models have been applied to forecast Bitcoin’s 
price. McNally et al. [12] used Long Short-Term Memory (LSTM) and 
historical price data to classify price movement patterns. Kristjanpoller 
et al. [13] tested the ANN-GARCH model for price forecasting, and the 
ANN part was used to capture the nonlinear effect of price fluctuation. 
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Guo et al. [10] proposed a probabilistic temporal mixture model to 
forecast the Bitcoin price. However, due to the high price fluctuation, 
these models have limited performance in forecasting accuracy and have 
failed to forecast price movement trends. The importance of forecasting 
the Bitcoin price has been documented in previous studies. However, 
research on how to rigorously forecast this price and its movement 
pattern is still lacking. Traditional approaches face the following chal
lenges: (1) how to identify the potentially important factors that affect 
Bitcoin price changes; and (2) how to design accurate forecasting models 
to deal with Bitcoin’s high price fluctuation. 

Our solution to resolve the first challenge comes from an interesting 
observation in the cryptocurrency market. Fig. 11 demonstrates the 
trading volumes in different types of exchanges and the correlations 
between trading volumes and prices. We observe that when the Bitcoin 
price is falling, the big exchange (e.g., Huobi) has higher trading vol
umes than the small exchange (e.g., Bleutrade), as shown in column (a). 
In contrast, when the Bitcoin price is rising, the small exchange (Bleu
trade) has higher trading volumes than the big exchange (Huobi), as 
shown in column (b). Some previous work has shown the effect of ex
changes on prices. Giudici et al. [14] found that the big and small ex
changes have different partial correlations to the Bitcoin price, and some 
exchanges are the price setters. Makarov et al. [15] found that Bitcoin 
price is related to the arbitrage between exchanges. Griffin et al. [16] 
found that the flow of Tether (i.e., one of the cryptocurrencies) between 
exchanges is correlated with the return of the Bitcoin price. Thus, the 
flows between exchanges are more likely to affect the price of crypto
currencies and should be adopted in the price forecasting analysis. 

To enhance the above insight, we denoted the total volumes of ex
change when the price rose as rising volume and the sum of an exchange’s 
volume when the price fell as falling volume. We calculated the ratio of 
the rising volume to the falling volume for each exchange. The results 
showed that the average ratio of big exchanges was 1.22, and the 
average ratio of small exchanges was 1.42. That is, the transaction 
volumes of small exchanges usually are larger than big exchanges when 
prices rise. This statistical result validates our insight. Therefore, such 
volume differences between big and small exchanges may correlate with 
the Bitcoin price, and we can utilize such correlations to forecast the 

Bitcoin price. We then consider the impact of social interest (i.e., by 
leveraging Google Trends search volume data) as an important measure 
of investor attention and media hype. 

We address the second challenge by proposing a new high- 
dimensional forecasting model, named WT-CATCN. WT-CATCN is 
based on the Wavelet Transform (WT) [17] and a well-designed Casual 
Multi-Head Attention Temporal Convolutional Network (CATCN). 
CATCN is based on the Causal Multi-Head Attention [18] and Temporal 
Convolutional Network (TCN) layers [19]. In our model, wavelet 
transform is utilized to alleviate the non-linear and non-stationary pri
ces. Causal Multi-Head Attention in TCN is leveraged to capture 
important positions of input data sequences by dynamically calculating 
the weights according to different data inputs. 

To demonstrate the effectiveness of our model, we use Bitcoin as the 
target of our research and obtain its transaction data from WalletEx
plore,2 which records the Bitcoin blockchain and merges addresses to 
different entities. We collect the inter-exchange transaction data from 
2016-01-01 to 2018-12-31, including the underlying blockchain trans
action data. The experiment results show that the correlations between 
the volumes of different exchanges indeed contribute to the price fore
casting by 19%. Moreover, our WT-CATCN model outperforms the state- 
of-the-art models by at least 25% in terms of forecasting accuracy at 
different time scales. The price trends, such as rising and falling, can also 
be captured by our model. 

Within the information systems (IS) discipline, current research on 
blockchain technologies and cryptocurrencies is still in the nascent stage 
[20]. Therefore, our work builds upon and extends this area and ad
dresses the call for research that facilitates better price forecasting and 
modeling for cryptocurrencies in general and Bitcoin in particular. Our 
paper contributes to the IS and Bitcoin literature in the following ways. 
First, we analyze the features which may affect the Bitcoin prices from 
the perspective of transactions in the blockchain, and we find that the 
volume difference between big and small exchanges can significantly 
contribute to price forecasting. By demonstrating the predictive power 
of the volume difference, we help firms develop deeper insights into the 
specific factors that contributes to cryptocurrency price prediction. To 
the best of our knowledge, the present paper is one of the pioneer works 
to utilize such features in cryptocurrency price forecasting. Second, we 
propose and evaluate a new price forecasting model, WT-CATCN. 
Combining Wavelet Transform (WT) and Casual Multi-Head Attention 
with the Temporal Convolutional Network (TCN) helps us to improve 
the forecasting accuracy for cryptocurrencies with high fluctuation, such 
as Bitcoin. Third, our WT-CATCN model can clearly detect Bitcoin’s 
price movement (e.g., rising, falling, concave) within 14 days, which is 
almost impossible for traditional methodologies. Traditional price 
forecasting methods often adopt an end-to-end approach in which pre
dictions about future prices mainly focus on price itself instead of the 
time-frequency features of prices. However, due to the high fluctuation, 
how to capture the trend of future cryptocurrency prices becomes a vital 
question, and firms can benefit tremendously from accurately detecting 
such movement trends. The basic intuition of the proposed WT-CATCN 
method is that we combine both wavelet transform and a well-designed 
deep learning model to boost the performance of the cryptocurrency 
price forecasting. The managerial implications of our research can lead 
to more effective price forecasting, thereby enabling financial firms to 
improve their ability to handle problems related to the prediction of 
highly fluctuating prices and achieve a sustainable competitive 
advantages. 

The rest of this paper is organized as follows. Section 2 discusses the 
related studies on price forecasting in the cryptocurrency market and 
traditional market. Section 3 provides the preliminaries of the block
chain transaction and problem formulation. Section 4 demonstrates our 

Fig. 1. The normalized inter-exchange transaction volumes of Huobi (one of 
the big exchanges) and Bleutrade (one of the small exchanges). Column (a) 
shows that the trading volumes of Huobi are larger than those of Bleutrade 
when the price drops. Column (b) shows that the trading volumes of Bleutrade 
are larger than Huobi when the price rises. This indicates that the trading 
volume difference between big and small exchanges could be considered in 
price forecasting. 

1 We use the Min-Max normalization method to scale the volumes into the 
range [0, 1] to better show the change and trend. 

2 Bitcoin block explorer with address grouping and wallet labeling: htt 
ps://www.walletexplorer.com/. 
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system and provides the details of the proposed model. Section 5 de
scribes the evaluation results. Section 6 investigates the scalability of our 
model. Section 7 concludes this work with a discussion of possible future 
works. 

2. Related work 

In this section, we survey the price forecasting not only in the 
cryptocurrency market but also in the traditional market. 

2.1. Price forecasting in the cryptocurrency market 

Several methods have been proposed to forecast the price of Bitcoin 
and other cryptocurrencies. For example, Katsiampa et al. [21] used 
daily closing prices to evaluate GARCH-type models and explain the 
volatility of Bitcoin’s prices. They found that AR-GARCH is one of the 
best models based on the goodness-of-fit measure. Mallqui et al. [22] 
proposed machine learning ensemble algorithms to predict the Bitcoin 
exchange rate. Combining Artificial Neural Network and AutoRe
gressive Conditional Heteroskedasticity, an ANN-GARCH framework 
was chosen from twelve different combinations of models and used to 
forecast Bitcoin price volatility based on the series of Bitcoin prices [13]. 
McNally et al. [12] used Bayesian-optimized Recurrent Neural Network 
(RNN) and Long Short-Term Memory (LSTM) based on price data to 
predict three states of price changes (price up, down, and no change) 
and found that the deep learning models have better performance than 
the traditional ARIMA model for time-series prediction. 
Alonso-Monsalve et al. [23] investigated different neural network ar
chitectures and concluded that CNN can be used in Bitcoin prediction. 
The above methods using only past price data cannot achieve high 
performance in Bitcoin price forecasting. 

Recent works have incorporated multiple data sources, such as 
sentiment-based data sources, to achieve better forecasting perfor
mance. Kim et al. [8] analyzed user comments on cryptocurrency online 
communities for sentiment tagging and used Average One-Dependent 
Estimator (AODE) to predict price. Stenqvist et al. [24] first classified 
the sentiment regarding Bitcoin on Twitter into three categories: Posi
tive, Neutral, and Negative. Then they used the three sentiment cate
gories to predict three states of price and showed that the proposed 
prediction model achieved great prediction accuracy. Similarly, Li et al. 
[25] used sentiment data on Twitter to forecast Bitcoin price fluctua
tions. They suggested that using semantics for forecasting results in 
limited performance improvement because some language schema (such 
as sarcasm) are difficult to classify. Mohapatra et al. [26] built a cryp
tocurrency price prediction platform based on Twitter sentiments, 
which support real-time prediction. Opinion information from Twitter is 
explored to predict Bitcoin prices [27]. Jain et al. [28] suggested that 
other features, such as mining cost and economic factors, may also affect 
Bitcoin price fluctuations. 

In addition to the sentiment data, other data sources have also been 
introduced. Rebane et al. [29] showed that Seq2Seq has better fore
casting performance than ARIMA using additional input sources such as 
Google Trends, Altcoin data, and Bitcoin prices. However, if the Bitcoin 
price faces falls sharply, the performance of the Seq2Seq model drops 
significantly. Jang et al. [9] used Bayesian Neural Networks (BNN) to 
forecast the Bitcoin price based on features extracted from the Block
chain, and they identified a collinearity problem between blockchain 
features and macroeconomic variables. Their experiments showed that 
BNN has better predictive performance than the Linear Regression (LR) 
and Support Vector Regression (SVR) models in both fluctuation and 
volatility. After extracting the generic properties, such as bid and ask 
prices of Bitcoin, Amjad et al. [30] used simple, real-time machine 
learning models to predict three states of price and simulate the trading 
strategy, which outperformed both EC and ARIMA models. Guo et al. 
[10] proposed probabilistic temporal mixture models to forecast 
short-term volatility based on the Bitcoin prices and order book data. 

The order book data consists of bid orders (the maximum price to buy) 
and ask orders (the minimum price to sell), which are stored in the ex
change database. Their models showed fewer errors than the statistic 
models and machine learning baselines. 

In this paper, we investigate a new set of features generated from the 
transactions between exchanges across the underlying blockchain, and 
we examine their roles in Bitcoin price forecasting. To the best of our 
knowledge, this paper is one of the pioneer works to use such infor
mation to forecast Bitcoin prices. 

2.2. Price forecasting in traditional market 

The cryptocurrency price forecasting problem is similar to the ones 
in traditional financial markets, including foreign exchange, stocks, 
commodities, and so on. We have investigated some methods that might 
be used to forecast cryptocurrency price changes. For instance, autore
gression models have been adopted to study predictability and stock 
returns [31]. Due to the non-linear and non-stationary features of stock 
prices, the traditional autoregression models have limited power to 
make an accurate forecast. To solve the non-linear problems in stock 
prices, many machine learning techniques [32–35] have been applied. 
Hassan et al. [34] presented a Hidden Markov Model (HMM)-based 
adaptive fuzzy inference system to analyze price trends. Nayak et al. 
[35] proposed a hybrid framework which combined the Support Vector 
Machine (SVM) and K-Nearest Neighbor approach to balance each 
model’s complexity and errors, achieving well forecasting performance 
for the stock market indices. 

Deep learning is a powerful method, that has revolutionized various 
industries, including the financial sectors [36]. Multiple studies have 
demonstrated that Artificial Neural Networks (ANN) models achieve 
better performance than the ARIMA model. Jiao et al. [37] used the 
standard machine learning models, including ANN models, to forecast 
the stock price changes based on 463 stocks in the S&P 500. Faccini et al. 
[38] proposed as a new predictor the representative investor’s implied 
relative risk aversion. Neely et al. [39] showed that technical indicators 
(relying on past price and volume patterns) and macroeconomic vari
ables (such as dividend-price ratio) can boost forecasting performance. 
To extract multi-frequency trading patterns, State Frequency Memory 
(SFM) [40], inspired by the Discrete Fourier Transform, has been 
developed. Sul et al. [41] utilized social sentiments and news to forecast 
stock prices. However, they only concatenated vectors into one super 
feature vector; thus such methods will lose the intrinsic links among 
features. Hence, Li et al. [42] used stock data to compare the 
tensor-based approach with Support Vector Regression (SVR), 
PCA+SCR, and ISOMAP+SVR, and they showed that the tensor-based 
approach outperformed other models. 

Unlike traditional financial markets, Bitcoin, as a decentralized 
digital currency, can be traded 24/7 without closing. Moreover, any 
offline information and events could influence the price of crypto
currency immediately rather than when the market (e.g., the stock 
market) opens. We analyzed the stocks dataset from the work [40] and 
found that the average value of the standard deviation of the 50 stock 
prices is 23.97. However, the Bitcoin prices’ standard deviation is 
3923.15. Hence, Bitcoin face greater fluctuations than most of the 
traditional financial assets, indicating an urgent need for a new fore
casting model to address such high price fluctuation. 

3. Preliminaries 

In this section, we provide preliminary information, including data 
collection and processing, and we then define the problem related to 
cryptocurrency price forecasting. 

3.1. Cryptocurrency transaction 

A blockchain-based cryptocurrency is issued by sending transactions 
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from senders to receivers. The sender or receiver represents a unique and 
anonymous address on the blockchain. The sender and the receiver of a 
transaction could each be a regular account, an institution (bank, ex
change, managed fund, etc.), or the blockchain itself (in this case, the 
amount of the transaction is considered a bonus to the miners). When a 
transaction is verified by the blockchain, Bitcoin is transferred from the 
sender’s address to the recipient’s address. For privacy, the addresses of 
a transaction are anonymous, while other information such as trans
action ID, amount, and fee are public. Furthermore, a single transaction 
often consists of multiple senders and receivers; thus, it is not easy to 
identify the particular sender and receiver in a specific cryptocurrency 
transaction. A cryptocurrency transaction is defined as follows: 

Definition 1. (A Transaction) A cryptocurrency transaction is a tuple 
ξ = 〈h, δ, P, R, S, V, e〉, where h is the hash ID of the transaction, δ is the 
timestamp, P = {p1, p2, …, pm} is the list of senders, R = {r1, r2, …, rn} is 
the list of receivers, S = {s1, s2, …, sm} is the corresponding amounts sent 
by the senders, V = {v1, v2,…, vn} is the corresponding amounts 
received by the receivers, and e is the fee of the transaction, such that | 
P| = |S|, |R| = |V|, and 

∑
(S) =

∑
(V) + f. 

Hence, an inter-exchange transaction that is, the transaction between 
two cryptocurrency exchanges, is a subset of cryptocurrency trans
actions where |P| = |S| = 1 and |R| = |V| = 1. This is formally defined 
as: 

Definition 2. (Inter-exchange Transaction) An inter-exchange trans
action is defined as a tuple τ = 〈h,δ,p,r,s,v,e〉, where h is the hash ID of 
the transaction, δ is the timestamp, p is the sender, r is the receiver, s is 
the amount sent by the sender, v is the amount received by the receiver, 
and e is the fee of the transaction. Thus, s = v+ e. 

In the cryptocurrency market, inter-exchange transactions illustrate 
the flow of cryptocurrency between exchanges. Inside a cryptocurrency 
exchange, there are also inner-exchange transactions, which illustrate 
the flow of cryptocurrency between trading accounts inside the ex
change. Differing from inter-exchange transactions, inner-exchange 
transactions are not recorded in the blockchain and are hard to access. 
Thus, inter-exchange transactions represent trustworthy data which 
may help in forecasting prices. It is worth noting that, inter-exchange 
transactions are one of the unique features of cryptocurrency. Such 
transactions are hard to obtain from standard currencies. 

Similar to traditional financial markets, based on the inner-exchange 
transactions, an exchange provides the market price in many forms. In 
this paper, based on the suggestions from domain experts, we use Open- 
High-Low-Close (OHLC)3 as the indicator of the market price. OHLC 
illustrates the price movement of a financial instrument over time by 
summarizing the opening price, highest price, lowest price, and closing 
price in a given time period. The time period (i.e., time frame) is often 
available by intervals of year, month, week, day, 60 min, 30 min, 
15 min, 5 min, 1 min, and so on. In this paper, we use day as the time 
frame for OHLC. Formally, an inner-exchange market price is defined as: 

Definition 3. (Inner-exchange Market Price) An inner-exchange 
market price is defined as a tuple mt = 〈ot , ht , lt , pt , vt〉, where ot, ht, lt, 
and pt are the opening price, highest price, lowest price, and closing 
price of the date time t, respectively; vt is the cumulative trading volume 
in the current time frame. 

3.2. Social interest 

In this paper, social interest refers to people’s interest in crypto
currencies. Previous literature has shown that social interest affects 
Bitcoin prices [7]. Representing the main way for people to understand 
cryptocurrency, social behavior data play an important role in price 

forecasting. We select Google Trends4 as the most representative data 
source for our social interest data [43]. Formally, we denote gκ

t as the 
Google Trends result for keyword κ on date t, indicating what people are 
searching around the world. Calculated by Google, gκ

t is a continuous 
variable from 0 to 100 that captures the trending searches over a period 
of time. The closer gκ

t is to 100, the more people are interested in 
keyword κ on date t. 

3.3. Data integration 

Since the above inter-exchange transactions, inner-exchange market 
prices, and social interest data often vary over time, we employ the 
dataset with length T before a specific timestamp d as our input data.  

• XT
d = {τi∣d − T + 1 < τi(δ) <= d} is the inter-exchange transactions 

set consisting of the transactions received from d − T + 1 to d;  
• MT

d = {mt ∣t = {d − T + 1,…, d}} is the past daily market prices 
before d + 1;  

• BT
d = {gκ

t ∣t = {d − T + 1,…, d}} is the past social interest data before 
d + 1. 

3.4. Problem definition 

In this study, our goal is to forecast the Bitcoin prices within a given 
time period. Hence, we use the input T-point temporal data XT

d , MT
d and 

BT
d to forecast the future n-step prices P̂n

d = {p̂d+i∣i = 1, 2,…, n} after 
timestamp d. The step indicates the time granularity (can be set to day, 
hour, etc.), and n indicates the length of the forecasting, which is from 
timestamp d + 1 to d + n. For example, we can forecast the daily prices 
within the next 7 days (here n is 7, and a step is set as per-day) using the 
data from the past 60 days (here T is 60, and each point represents one 
day). The Cryptocurrency Price Forecasting Problem (CPFP) can be 
formally defined as: 

Definition 4. (Cryptocurrency Price Forecasting Problem) Minimize the 
error ℴ between P̂n

d and true prices: 

ℴ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1(p̂d+i − pd+i)
2

n

√

(1)  

Such that: 

P̂n
d = f (XT

d ;M
T
d ;B

T
d ) (2)  

where P̂n
d = {p̂d+i∣i = 1,2,…,n}, {pd+i ∣ i = 1, 2, …, n} are the real prices, 

and f is a non-linear function represented by our model that we aim to 
learn. 

4. System design 

In this section, we introduce our forecasting system, which extracts 
features from the inter-exchange transactions, market prices, and social 
interest data to forecast prices. 

4.1. System overview 

To solve the cryptocurrency price forecasting problem, we propose a 
cryptocurrency price forecasting system as shown in Fig. 2. The system 
contains two major parts: the feature extraction module and the fore
casting model. The first part of our system involves extracting repre
sentative features from three categories of datasets (XT

d , MT
d and BT

d ). 
Details are discussed in Section 4.2. In the second part, we propose a 

3 https://en.wikipedia.org/wiki/Open-high-low-close_chart. 4 https://trends.google.com/. 
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forecasting model called WT-CATCN, which is based on Wavelet 
Transform (WT) and Casual Multi-Head Attention Temporal Convolu
tional Network (CATCN). Wavelet transform is employed to alleviate the 
impact of the non-linear and non-stationary input data, and CATCN is 
used to address the relationships among input data by adding casual 
multi-head attention in traditional TCN. The details are provided in 
Section 4.3. 

4.2. Feature extraction 

In this section, we present the method used to extract features from 
the input data. According to the definition in the last section, our input 
data consist of inter-exchange transactions data XT

d , inner-exchange 
market prices data MT

d and social interest data BT
d . 

As shown in Fig. 1, the volume differences between big and small 
exchanges may have a potential impact on the Bitcoin price. Therefore, 
we start by cleansing the data and producing inter-exchange transaction 
τi. Then we divide τi into two transaction sets: big exchanges and small 
exchanges. Here, we adopt the industry rule which utilizes the top-k 
exchanges in terms of volume as the threshold to differentiate big and 
small exchanges. The details are as follows. 

We collect and preprocess the cryptocurrency transactions ξ from 
WalletExplorer. Since the collected data come from the underlying 
blockchain, these underlying transaction data are reliable. As the 
transactions have multiple senders and receivers, we construct a 

cartesian transaction set of blockchain transactions according to the 
senders and receivers. Then the transaction fee is also recorded for all 
transactions. The last step is to select inter-exchange transactions τi from 
the cartesian transaction set. WalletExplorer has grouped and labeled 
the addresses; thus, we can exclude the transactions for which the sender 
and receiver do not have labels. 

The next step is to divide τi; we eliminate the redundancy of the {τi(p)
, τi(r)∣τi ∈ XT

d}, then form a unique element set 𝒰, which consists of the 
receiver or sender of τi. 

Next, we denote the transaction set of exchange uj generated during 
the period from time t − 1 to t, as ℋ

uj
t = {τi∣τi(p) = uj and t −

1 < τi(δ)⩽t}, where t = {d − T + 1, …, d}. 
In order to choose the top-k exchanges, we calculate the volume of 

each exchange and rank exchanges accordingly as suggested by the 
widely accepted website CoinMarketCap.5 For exchange uj, we define 
Voluj of the exchange as: 

Voluj =
∑d

t=d− T+1

∑

τi⫅ℋ
uj
t

(τi(v) + τi(s))vt (3) 

We define the top-k exchanges as big exchanges, whose transactions 

Fig. 2. A new cryptocurrency price forecasting system.  

5 CoinMarketCap’s service provides information about all digital currencies 
that are traded in at least one public exchange and have a non-zero trading 
volume. https://coinmarketcap.com/rankings/exchanges/. 
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account for nearly half of the total transactions, and the trading volume 
of these exchanges is always among the top-k. Then, we define the rest as 
small exchanges. As Fig. 3 shows, the top-4 exchanges dominate around 
50% of the transactions in the market. According to the industry rule, we 
set k as 4. 

To explore the trading behavior between big and small exchanges, 
we record all the transactions between them. We ignore the transactions 
between big exchanges, since they are considered as internal trans
actions. Similarly, the trading between small exchanges is likewise not 
considered. 

The inflow of small exchanges is the outflow of big exchanges, and 
vice versa. For these symmetric links, we only need to calculate once for 
the transactions’ outflow τi(s) and the corresponding transaction fees. 
We define the extracted features as 𝒳 z

t , where t = {d − T + 1, …, d}, and 
z is the vector consisting of the features shown in Table 1. The last four 
features are the Bitcoin prices transferred into USD in the real world. 

4.3. Forecasting model 

In this section, we aim to forecast n-step prices P̂n
d of cryptocurrency 

using the time series features 𝒳 z
t . Our forecasting model WT-CATCN is 

based on Wavelet Transform (WT) and Casual Multi-Head Attention 
Temporal Convolutional Network (CATCN). In order to solve the non- 
linear and non-stationary problem of the input data, we utilize 
Wavelet Decomposition of Discrete Wavelet Transform (DWT) to 
decompose 𝒳 z

t into time-frequency features (as detailed in Section 
4.3.1). 

Next, we utilize CATCN, which stacks multiple CATCN blocks to 
forecast the time-frequency features of P̂n

d . Each CATCN block contains 
casual multi-head attention and the TCN layer. 

Casual multi-head attention (detailed in Section 4.3.2) can make the 
block focus on the important positions of the data while ensuring the 
causality (the way of calculation, is defined in [19]). As for the TCN 
layer (detailed in Section 4.3.3), its convolutions are causal and have 
long-term memory similar to LSTM. Each CATCN block (detailed in 
Section 4.3.4) is defined by stacking the causal self-attention layer and 
TCN layer naturally. Finally, we reconstruct the time-frequency prices to 
the final prices P̂n

d by Wavelet Reconstruction (detailed in Section 4.3.5). 

4.3.1. Discrete wavelet decomposition 
Wavelet transform is adopted to alleviate the impact of the non- 

linear and non-stationary input data. Its main property is variable 
time-frequency resolution, which allows wavelet transform to have a 
higher-frequency solution (local behavior) with a lower time solution, or 
a lower-frequency solution (general behavior) with a higher time solu
tion. The use of WT also makes it convenient to train neural networks 
[44]. Thus, we decompose 𝒳 z

t into multiple time-frequency features of z 
to explore different hidden patterns in our input data. The details are 
shown below. 

Wavelet is used to decompose input sequences into different scale 
components. The discrete wavelets [45] ψ are as follows: 

ψn1 ,n2
(t) = a−

n1
2 ψ(a− n1 t − bn2), n1, n2 ∈ ℤ (4)  

where a is the scale factor and b is the translation factor. Scale factor a 
controls the stretch or shrink of the wavelet. Translation factor b can 
shift the wavelet to move on input sequence 𝒳 z

t . ℤ represents the integer 
set. 

Discrete wavelet transform is defined as: 

DWTn1 ,n2 = a−
n1
2

∑d

t=d− T+1
𝒳 z

t ψ∗(a− n1 t − bn2) (5)  

where * denotes the complex conjugate. The reconstruction of 𝒳 z
t can 

only be performed when the discrete wavelet satisfies certain conditions. 

The common way for the reconstruction is to build a discrete dyadic 
wavelet transform as follows: 

DWTi,j = 2− i
2

∑d

t=d− T+1
𝒳 z

t ψ∗(2− mt − j) n1, n2 ∈ ℤ (6)  

where n1 and n2 are set to 1, a = 2i, b = j2i. 
Then, 𝒳 z

t can be decomposed and reconstructed by employing Ste
phane Mallat’s Multiresolution Analysis (MRS) [46]. After the decom
position of MRS, the function of discrete wavelet decomposition can be 
defined as: 

Γ(𝒳 z
t ) = {Az

J ,D
z
1,D

z
2,…,Dz

J} (7)  

where J is the decomposition level, Az
J is the approximation components 

(i.e., low-frequency components used to capture the general behavior) 
for each feature of z, and {Dz

j , ∣j = 1,2,…, J} are detail components (i.e., 
high-frequency components used to capture the local behavior) for each 
feature of z. Then, time-series features 𝒳 z

t can be decomposed as Az
J,Dz

1,

Dz
2,…,Dz

J, as Fig. 4 shows. 

4.3.2. Casual multi-head attention 
Attention mechanism [18] can selectively screen out important in

formation from a large amount of input sequence. Multi-head attention 
[18] is used to dynamically calculate the attention value for each posi
tion in the input sequence, such that different input positions have 
different importance levels. Since our input time series data are corre
lated with each other at different timestamps, we use casual multi-head 
attention to examine the attention values for the input sequence and 
keep causality within the data. 

Casual multi-head attention, by our design, is the first layer of each 
CATCN block, and there are multiple CATCN blocks in our system. Thus, 
there are two types of input of casual multi-head attention:  

(1) If the layer is in the first CATCN block, the input comprises the 
corresponding time-frequency features {Az

J, Dz
1, Dz

2, …, Dz
J}. 

Without loss of generality, we define x as either Az
J or Dz

i , i ∈ [1, 
J].  

(2) If the layer is in the rest of the CATCN blocks, the input is the 
output of its previous CATCN block. 

The casual multi-head attention layer combines multiple causal self- 
attention layers similar to [18], as shown in Fig. 5. Each causal 
self-attention layer can calculate attention values for x. Multiple causal 
self-attention layers can calculate multiple attention values and extract 
more information from input data. We denote the number of causal 
self-attention layers as Nm. 

The causal self-attention layer is calculated by three matrices, Q, K, 
and V, that represent the query, key, and value respectively [18]. Q, K and 
V are calculated by multiplying the input x by three parameter matrices 
having the same size. Their values are updated after the matrices are 
trained. Attention values are calculated by taking the dot product of the 
Q and K. 

Since the future price data are not available in advance, we need to 
design a mask6 to replace the corresponding attention values to negative 
infinity and to cause the attention values related to future data to be zero 
after the softmax function. Thus, the self-attention becomes causal by 
adding the mask. The specific calculation process of the casual self- 
attention layer is defined as follows. 

Mask(X) =
{

X(i,j) = X(i,j), if i ≤ j
X(i,j) = − inf, otherwise. (8) 

6 A mask is a matrix to select the places of interest. In our work, it represents 
the matrix in Eq. (8). 
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where X(i,j) = QKT is a square matrix. 

Attention(Q,K,V) = softmax(
Mask(QKT)

̅̅̅̅̅
dx

√ )V (9)  

where dx is the dimension of x, and the softmax function is used to 
calculate the distribution of attention values. After we calculate the 
attention values Attention(Q, K, V), the causal multi-head attention 

can be defined as: 

MultiHead(x) = Concat({headi})Wm (10)  

where headi = Attention(Qi, Ki, Vi), i = {1, 2, …, Nm}. Qi, Ki and Vi 
are generated by multiplying the input x by different parameter 
matrices. Wm is a parameter matrix to project different attention values, 
and the final attention values have the same dimension of x. 

Next, we calculate the multi-head attention values MultiHead(x) 
for x, and the input of the TCN layer (introduced in the next subsection) 
is calculated as x′

= MultiHead(x) = {x′

i∣i = 1,2,…,lb}, where lb is the 
length of input x. 

4.3.3. Temporal convolutional network layer 
Temporal Convolutional Network (TCN) can be used to achieve long 

memory7 and simplify the neural networks [19]. It not only can alleviate 
the problems of vanishing gradient and exploding gradient8 but also can 
be computed in a parallel approach.9 

TCN Layer. The TCN layer is used to build the CATCN block in 
Section 4.3.4. The TCN layer is composed of a stack of two identical sub- 
layers. To achieve long memory, each TCN layer has twice the dilation 

factor (detailed later in the Dilated Convolutions section) of the previous 

Fig. 3. The top-4 exchanges dominate the whole Bitcoin transactions.  

Table 1 
The features of 𝒳 z

t .  

Data source  Features 

Market prices data zm The market price mt as defined in Definition 3. 
Social interest data zg The social behavior data gκ

t as defined in Section 3.2.  

Inter-exchange 
transaction data 

z1 
The average number of Bitcoin as flowing from big 
exchanges to small exchanges. 

z2 
The average transaction fee es flowing from big 
exchanges to small exchanges. 

z3 
The average number of Bitcoin al flowing from small 
exchanges to big exchanges. 

z4 
The average transaction fee eb flowing from small 
exchanges to big exchanges. 

z5 
The average number of USD ap

s = aspt flowing from 
big exchanges to small exchanges.  

z6 
The average transaction fee (USD) ep

s = espt flowing 
from big exchanges to small exchanges.  

z7 
The average number of USD ap

b = abpt flowing to 
from small exchanges to big exchanges.  

z8 
The average transaction fee (USD) ep

b = ebpt flowing 
from small exchanges to big exchanges.   

Fig. 4. WT-CATCN architecture.  

7 Long memory means that a model is capable of learning and remembering 
over long sequences of inputs.  

8 After the activation function of the multi-layer neural network, the gradient 
exponential decay/increase may causes vanishing/exploding gradient. 

9 Neural networks usually run on the GPU (Graphics Processing Unit), con
volutional architecture can be better optimized and run parallel in GPU. 

H. Guo et al.                                                                                                                                                                                                                                     



Decision Support Systems 151 (2021) 113650

8

layer to increase the receptive field. The dilation factor exponentially 
increases with the number of the TCN layers, which makes the memory 
of CATCN exponentially increase. Building the TCN layer in this way 
guarantees that our model can process long sequence data more effi
ciently. The sub-layer of the TCN layer is composed of causal and dilated 
convolutions, which are implemented as follows. 

Causal convolutions: Models with causal convolutions can form a 
function, which is similar to that of recurrent connections of RNNs. 

Causal convolution needs the convolution operation to convolve the 
data before time x′

i. Causal convolutions can be defined as: 

y′

i = (x′

∗ W)(i) =
∑lw − 1

η=0
x′

i− ηW(i), (11)  

where i = {1, 2, …, lb}, W represents a matrix (usually called the kernel) 
multiplication for causal convolution, and lw is the kernel size of W. The 
model with casual convolutions is casual and efficient, but it does not 
have a large enough receptive field to address a long sequence dataset. 
To address this concern, we adopt the following dilated convolutions. 

Dilated convolutions: Dilated convolutions are used to expand the 
kernels to increase the receptive field and maintain the size of the ker
nels, which means that holes are added to the kernel at the same interval 
controlled by dilation factor d. Dilated convolution can be converted 
from Eq. (11) as: 

y′

i = (x′

∗dW)(i) =
∑lw − 1

η=0
vi− d⋅ηW(i), (12)  

where W represents a matrix multiplication for dilated convolution. The 
receptive field can be increased exponentially by 2 times d with each 
additional layer. 

4.3.4. CATCN block 
By stacking causal multi-head attention and the TCN layer, the 

proposed CATCN (Casual Multi-Head Attention TCN) block is shown in 
Fig. 5. The CATCN block has the following characteristics: 

Causality. To guarantee the sequence of each step of the time series, 
the CATCN block is used to processes the input in a comprehensive 
causality way. In the causal multi-head attention layer, we use the casual 
mask to invalid the attention values which involve future data. At the 
same time, the TCN layer uses causal convolutions to address the data 
from the causal multi-head attention layer. Stacking these two layers 
allows the CATCN block to focus on important positions while pro
cessing the data in a causality approach. 

Residual connection. The number of layers in the model increases if 
the input is a very long sequence. This may cause the degradation of 
model performance. 

Inspired by the gate controls of LSTM, He et al. [47] propose the 
residual block, which adds an input to the nonlinear transformation of 
the input. After using the residual block, models with an increasing 
number of layers show significant improvement. Hence, the residual 
connection is implemented in our block. The residual block can be 
defined as: 

y′′ = A(x +ℱ(x)) (13)  

where i = {1, 2, …, lb}, x is the input of the residual block, A is activation 
function and ℱ is the nonlinear transformation which consists of causal 
multi-head attention and TCN layers. 

The CATCN block can leverage dilated convolutions to enlarge the 
receptive field; thus, the receptive field of CATCN increases exponen
tially with the increasing number of CATCN blocks. To prevent a very 
large receptive field, the number of CATCN blocks needs to be 
controlled. We denote the number of CATCN blocks as Nc. The receptive 
field lr of the last block can be calculated as: 

lr = 1 + 2(lw − 1)(2Nc − 1) (14)  

In general, the receptive field should cover all the available data; thus, lr 
should cover the input of the first block. By fixing lr, Nc can be calculated 
according to Eq. (14). 

4.3.5. Wavelet reconstruction 
For each CATCN, the components of their output can be integrated as 

{Âp
J , D̂

p
1 ,…, D̂p

J}, which are the components of P̂n
d . We can use the inverse 

transform of Eq. (7) to reconstruct P̂n
d , which is defined as: 

Γ− 1({Âp
J , D̂p

1 ,…, D̂p
J }) = P̂n

d (15)  

5. Evaluation and result 

In this section, we conduct a series of experiments to evaluate our 
WT-CATCN model proposed in Section 4.3. 

5.1. Experiment setup 

5.1.1. Datasets  

• Inter-exchange Transactions. The inter-exchange transaction data 
are collected from WalletExplorer, one of the most well-known 
websites monitoring Bitcoin transactions between exchanges. This 
dataset contains 87 exchanges’ transactions from 2016-01-01 to 
2018-12-31. The total number of transactions is 63,748,894, and the 
number of transactions between exchanges is 2,668,529.  

• Inner-exchange Market Prices. To get the fairest market prices, we 
collect Bitcoin price data from CoinMarketCap, because it prices 
Bitcoin by obtaining the price of exchange and convert it using the 
existing reference prices. The market price data contain the daily 
OHLC and volume from 2016-01-01 to 2018-12-31. 

Fig. 5. The CATCN block consists of the TCN layer and multiple causal self- 
attention layers. Here is an example in which the kernel size l is 2 and the 
dilated factor d is 2. 
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• Google Trends Data. Google provides flexible time granularity for 
its Trends data. In our experiment, we set κ as Bitcoin (also used in 
[29]) to obtain the daily search data from 2016-01-01 to 2018-12-31. 

In our experiment, our input data covers almost one year before the 
forecast starting point. Such one year data can be used as the training 
dataset. During the training, we randomly select time points to forecast, 
set T as 60 from the training dataset as input, and forecast the price of 
the next n-step (n is set as 14 in our experiment). The reason why we set 
n as 14 is that 14-step is large enough to provide a clear trend of price 
while remaining small enough to achieve good performance throughout 
the forecasting sequence [29]. The test results on different time periods 
forecasting are reported in Tables 6 and 7. 

5.1.2. Baselines 
In this paper, we compare our proposed WT-CATCN with the 

following baseline and state-of-the-art methods.  

• ARIMA. The Autoregressive Integrated Moving Average (ARIMA) 
model is one of the most widely used statistical models in time-series 
analysis. ARIMA is widely used in the Bitcoin prediction [30,29,12, 
10], which takes Bitcoin price as input and predicts the future price.  

• ARIMAX. This model incorporates additional explanatory variables 
into ARIMA, which makes it more suitable for non-stationary and 
multi-variable data. Compared with ARIMA, ARIMAX takes all the 
features in Table 1 as input.  

• CNN. Convolutional Neural Networks (CNN) performs well not only 
in computer vision but also in the financial market, such as in stock 
forecasting.  

• MLP. Multilayer Perceptron (MLP) is a typical feedforward artificial 
neural network, which can be applied in time-series forecasting.  

• LSTM. Long Short-Term Memory (LSTM) is a variant of a recurrent 
neural network (RNN) that is widely used in time-series forecasting 
[10,40].  

• Seq2Seq. A Sequence to Sequence (Seq2Seq) network consists of an 
encoder and a decoder. We follow the Seq2Seq network suggested in 
[29].  

• BNN. Bayesian Neural Networks (BNN) have been applied in many 
fields, such as price forecasting [9].  

• SFM. State-Frequency Memory (SFM) Recurrent Neural Networks 
have been applied in stock price prediction [40]. 

5.1.3. Implementation details 
In the following experiments, the default setting is as follows. For the 

wavelet transform part, we use db4 wavelet, a typical Daubechies 
Wavelet, to decompose the 𝒳 z

t . Kernel size lw is set to 2, and the 
decomposition level J is set to 1 so that there are two components in the 
output {A1, D1} with the same length, which makes it easier to choose 
the same parameters for the models. For the datasets, we use all the 
datasets by default. The T and n are set to 60 and 14, respectively. 

With the length of input T and lw, we can calculate the Nc as 4 ac
cording to Eq. (14). Thus the Nm is set to 4. In general, the learning rate is 
set to 0.003. We keep the training epochs10 as 50 and batch size11 as 8. 
The model is optimized by performing mini-batch stochastic gradient 
descent using Adam Optimizer12 and trained on two NVIDIA GTX 
1080Ti GPUs. All the parameters are optimized by using mean square 
error (MSE) as the loss function. 

5.1.4. Evaluation metrics 
Closeness and direction metrics are used to measure the forecasting 

of the next price, with the closeness metric capturing the deviation of the 
forecasting price and the direction metric capturing the trend of the 
forecasting price [42]. Our aim is to forecast n-step prices; therefore, we 
need more appropriate metrics of closeness and direction to measure our 
forecasting. 

For closeness metrics, we use Root Mean Square Error(RMSE) to 
measure the deviation of forecasting prices. Used in many works [10,29, 
9] as the standard deviation of the forecasting errors, RMSE can measure 
the closeness of the forecasting curve, but not the direction of the curve. 

Typical closeness metrics to measure the deviation of forecasting 
prices are listed as follow: 

• MAE. Mean Absolute Error (MAE) represents the average of the ab
solute errors between the forecasting result and the true price.  

• MSE. Mean Squared Error (MSE) measures the average of the squares 
of the errors between the forecasting result and the true price.  

• RMSE. Root Mean Square Error (RMSE) measures the deviation of 
forecasting prices. RMSE has been used in many studies [10,29,9] 
and is the standard deviation of the forecasting errors. 

For the reason that there is no standard metric to measure the trend 
of n-step forecasting, we consider the following metrics as direction 
metrics:  

• Fréchet Dist. Discrete Fréchet Distance is a measure of similarity 
between curves. It consider the location and order of the points. 

• DTW. Dynamic Time Warping distance is used to measure the sim
ilarity between two sequences. 

5.2. Experiment results 

5.2.1. Performance 
We forecast the Bitcoin price using our WT-CATCN model based on 

the testing dataset from 2017-06-15 to 2018-09-21 as a randomly 
selected time period. The performance of our model, traditional models, 
and deep learning models are presented in Tables 2 and 3. 

As shown in Table 2, between the linear models, ARIMA forecasts 
better than ARIMAX. Although ARIMAX considers more features as 
input, it achieves worse performance (about 54% in RMSE). One 
possible explanation is that ARIMAX cannot model the interaction be
tween any two input variables. The price predicted by the linear models 
is like a straight line (shown in the next section), which is apt to have a 
small error in most cases, but it cannot reflect the price trend. 

The traditional models have limited ability to capture useful infor
mation and make precise forecasts. For models like CNN and MLP, their 
closeness and direction metrics can only reach about 3045 and 2675 on 

Table 2 
Comparison with baseline methods.  

Model Closeness metric Direction metric  

MSE MAE RMSE Fréchet 
dist 

DTW 

ARIMA 3.658e+06 1212.321 1392.607 2294.416 5210.660 
ARIMAX 9.056e+06 1895.164 2147.586 3371.873 8035.529  

CNN 1.570e+07 2925.147 3044.914 4114.364 11393.024 
MLP 1.188e+07 2557.760 2675.220 3857.817 10009.758 
LSTM 7.865e+06 1995.959 2207.373 3187.193 8259.233 
Seq2Seq 7.244e+06 1887.248 2085.580 2986.248 7803.527 
BNN 4.551e+06 1518.051 1702.973 2621.925 6371.943 
SFM 3.747e+06 1434.790 1608.113 2475.281 6017.006  

WT- 
CATCN 

2.018eþ06 1044.375 1204.091 1903.501 4505.296 

Bold values are our experimental results (WT-CATCN is our algorithm). 

10 One epoch means the algorithm runs all the samples in the training dataset 
once.  
11 The number of samples fed into the neural network at one time.  
12 Optimizers are algorithms or methods used to change the attributes of 

neural networks such as weights and learning rate in order to reduce the losses. 
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RMSE, respectively. It is quite challenging for them to forecast prices, 
since they are not designed for time-series forecasting. For deep learning 
models, LSTM, BNN, and SFM obtain better forecasting results, with 
SFM achieving the best performance. 

When comparing our model with the representative deep learning 
models, it is clear that our model significantly outperforms them for both 
the closeness and direction metrics. For the closeness metrics, our model 
has a nearly 25% improvement on RMSE than the state-of-the-art SFM 

model. The main reason is that SFM cannot model well the multiple 
frequency components underlying very high fluctuation which is the 
advantage of our method. For the direction metrics, our model yields the 
lowest Fréchet dist and DTW measure. In other words, our model not 
only obtains the smallest deviation but also captures a clear price trend. 

5.2.2. Case study 
In this subsection, we show our experimental results in different 

price trend scenarios: Rising (prices keep increasing over time), Falling 
(prices keep decreasing over time), Convex (prices first increase then 
decrease over time), Concave (prices first decrease then increase over 
time), and Flat (prices are stable over time). 

In order to clearly visualize the forecasting prices, we compare our 
results with the three models among the baselines (ARIMA, SFM, and 
BNN). The result of each trend is presented in Fig. 6. We find that WT- 
CATCN can accurately forecast most of the trends. The details are dis
cussed below. 

For the rising trend (subfigure (a)), WT-CATCN has the best fore
casting result, and its RMSE is about 716. The SFM predicts the right 
trend curve only at the beginning. BNN is able to forecast the rising 
trend, but its curves are not as smooth as WT-CATCN’s curve. The 
ARIMA’s curve is very flat, which indicates that this model usually 
cannot capture the rising trend. WT-CATCN is the only model that can 

Table 3 
Comparison with baseline methods (increased ratio compare to ARIMA).  

Model Closeness metric Direction metric  

MSE MAE RMSE Fréchet dist DTW 

ARIMA 1.00 1.00 1.00 1.00 1.00 
ARIMAX 2.47 1.56 1.54 1.47 1.54  

CNN 4.29 2.41 2.18 1.79 2.19 
MLP 3.25 2.11 1.92 1.68 1.92 
LSTM 2.15 1.65 1.58 1.39 1.59 
Seq2Seq 1.98 1.56 1.50 1.30 1.49 
BNN 1.24 1.25 1.22 1.14 1.22 
SFM 1.02 1.18 1.15 1.08 1.15  

WT-CATCN 0.55 0.86 0.86 0.83 0.86 

Bold values are our experimental results (WT-CATCN is our algorithm). 

Fig. 6. Comparison of price trends: rising, falling, convex, concave, flat.  
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capture the falling pattern (subfigure (b)) and achieve the minimum 
RMSE of 1356. None of the models are able to capture the convex 
pattern (subfigure (c)). The forecasting curves are either flat or far away 
from the true value. WT-CATCN and BNN are better able to capture the 
concave pattern (subfigure (d)) compared to SFM and ARIMA, which 
forecast the wrong trend. For the flat trend (subfigure (e)), WT-CATCN 
and SFM forecast a closer price trend to the true value, and ARIMA 
achieves the small RMSE measure. 

Furthermore, we conduct experiments to show our model’s perfor
mance in short-term and long-term forecasting from 2017-10-27 to 
2018-02-16 as a randomly selected time period. 

Fig. 7 shows the daily forecasting (the short-term) of our model and 
compare it with the SFM model. The solid curve in the figure is the real 
price of Bitcoin, and the dashed lines are the forecasting price. We can 
observe that our forecasting is very close to the actual result. WT-CATCN 
is more sensitive to price rising and falling, while SFM has a delay effect 
for the trend during the forecasting. As for the SFM model, its forecasting 
price is similar to the previous day price and results in the poor fore
casting results. 

Fig. 8 shows the 14-step forecasting (the long-term). The gray ver
tical lines split the time range into 14-day regions. For example, the first 
line indicates that the continuous forecasting started from 2017-10-27 
and ended at 2017-11-10. Thus the forecast prices will break at two 
adjacent regions. It is always very challenging to forecast in long term, 
but our method is able to forecast better trends than the state-of-the-art 
SFM model as shown in the figure. 

From the above two figures, we conclude that our model has high 
forecasting ability for both short term and long term forecasting, is able 
to capture the price rising and falling trends, and has better performance 
on the concave trend compared to the SFM and BNN. 

5.2.3. Model ablation 
To investigate the role of different components of WT-CATCN on the 

forecasting performance, we compare our model with the original TCN, 
WT-TCN (TCN with wavelet transform), and WT-ATCN (disabling the 
causal mask of the CATCN block) using the testing dataset. 

We can observe from Table 4 that, if we only leverage TCN, its RMSE 
is about 1700. After applying wavelet transform to TCN, WT-TCN ach
ieves better performance (RMSE 1588) than TCN (RMSE 1700), with an 
approximately 6.5% improvement on RMSE. This improvement is 
possible because wavelet transform can effectively alleviate the non- 
stationary data, which greatly improves the forecasting accuracy. We 
can also see that the design of using different networks to predict the 
time-frequency features can help to improve performance. WT-ATCN 
incorporates multi-head attention based on WT-TCN, which can 
decrease the RMSE by 14%. The result shows that attention is a useful 
mechanism and plays a critical role in our model. To demonstrate the 
importance of the casual mask, we compare the two models with and 

without this layer, and we find that WT-CATCN utilizing causal multi- 
head attention can improve the performance by 12% compared to 
WT-ATCN. This explains why causality is important in the networks 
when we design WT-CATCN. 

To summarize, each component of our model contributes to the 
improvement of the forecasting performance. Specifically, the causality 
of WT-CATCN brings about 12% improvement over WT-ATCN. The 
causal multi-head attention layer can bring about 24% improvement 
compared to WT-TCN. Compared to the original TCN, by adding wavelet 
transform and causal multi-head attention, WT-CATCN improves the 
forecasting performance by 29%. 

5.2.4. Impact of key parameters 
In this subsection, we investigate the impact of two key parameters: 

the selection of different wavelets and the number of casual multi-head 
attention Nm. 

With different decomposition and reconstruction processes, various 
types of wavelets have different impacts on the result of n-step fore
casting. Therefore, we first investigate how wavelet type affects the 

Fig. 7. The daily forecasting curve of WT-CATCN and SFM from 2017-10-27 to 2018-02-16. The daily forecasting (short-term) result of our method WT-CATCN has 
4.5% better than SFM. 

Fig. 8. The 14-days (long-term) forecasting curve of WT-CATCN and SFM from 
2017-10-27 to 2018-02-16. 

Table 4 
Model comparison. WT-TCN is the TCN with wavelet transform. WT-ATCN is the 
model WT-CATCN disabling the causality of attention.  

Model Closeness metric Direction metric  

MSE MAE RMSE Fréchet dist DTW 

TCN 6.092e+06 1552.139 1699.961 2582.408 6360.673 
WT-TCN 4.288e+06 1419.110 1588.554 2496.086 5943.826 
WT-ATCN 2.791e+06 1213.885 1371.706 2138.074 5132.457 
WT- 

CATCN 
2.018eþ06 1044.375 1204.091 1903.501 4505.296 

Bold values are our experimental results (WT-CATCN is our algorithm). 
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forecasting results. We test the popular wavelets db1, db4 and db8, and 
vary the n from 2 to 28. The results are presented in Table 5. 

We observe that the forecasting performance decreases (with 
increasing RMSE) as n increases. In general, db4 is better than db8 and 
db1, especially when n is less than 14. Considering that short-term 
forecasting is usually used by common users and the performance dif
ference is very small when n is larger than 14, we set db4 as the default in 
our experiments. 

Second, we further investigate the impact of Nm (the number of the 
casual self-attention layers) on the forecasting results. We set Nm to 1, 4 
and 8, and their impacts on forecasting performance (RMSE) are 
1215.39, 1204.09, and 1232.85, respectively. It is clear that the 4-head 
model achieves better performance and brings more improvement than 
the 1-head model. One possible explanation for this is that more heads 
bring additional useful information to our model, which leads to more 
accurate forecasting. Furthermore, we find that the 4-head model is also 
better than the 8-head model. A possible explanation is that more heads 
make the model focus on more information sources than needed, 
resulting in distractions when the information is fused. 

6. Scalability 

To investigate the scalability of our model, such as the number of 
days we can perform accurate forecasting, we conduct the n-step 
experiment by applying different time lengths. First, we test the number 
of n from 1 to 30. The experiment results are demonstrated in Fig. 9. We 
observe that the error of WT-CATCN increases slowly as the n increases 
until n > 18. After 18 days, the error increases with a faster speed than 
before. This is possible because there are too many uncertainties asso
ciated with future prices, and forecasting based on previous data leads to 
a larger error. 

Second, we test other different time granularity combinations of n- 
step and T-point. We summarize the experimental results in Table 6. 
Enlarging the training data time granularity (T-point) does not improve 
the forecasting performance. However, the forecasting performance 
decreases when the testing data time granularity (n-step) increases. 

To summarize, the result of forecasting within 18 days is the most 
accurate. If the query time period is longer than this, the forecasting 
performance decreases. Therefore, it is preferable for users to choose a 
value of n smaller than 18 when they use our proposed model to forecast 
Bitcoin prices. Moreover, we find that enlarging the training data 
granularity does not improve the performance. 

To find out the impact of the length of training data T, we test the 
number of T from 20 to 100; results of the experiment are shown in 
Table 7. The SFM model is excluded from this experiment, as it is trained 
on all the training sequences [40]. We find that 60 and 80 of T-points are 
good parameters for WT-CATCN. The possible reasons for this are as 
follows. A short T value cannot capture the important data movement 
patterns in the historical data, whereas a long T value may increase the 
difficulty associated with finding the important information hidden in 
massive input data. Therefore, in our later experiment, we set the T as 60 
by default. 

6.1. Feature importance 

Using the testing dataset, we investigate the role of the three features 
(market prices features, inter-exchange transaction features, and social 
interest features) on the forecasting performance. We summarize the 
experimental results in Table 8. Our model achieves the best perfor
mance when we consider all three types of features and outperforms the Table 5 

The impact of different wavelets on forecasting n-step price performance 
(RMSE).   

n  

2 7 14 21 28 

db1 572.093 1103.132 1382.069 1859.933 2465.548 
db4 605.388 883.728 1204.091 2087.809 3361.800 
db8 659.412 948.925 1226.658 1765.025 2440.552 

Bold values are the best performance results when we compare different 
parameters. 

Fig. 9. Forecasting error (RMSE) for n-step (n = {1, 2, …, 30}) by WT-CATCN.  

Table 6 
The impact of different time granularity (T-point and n-step) on forecasting 
performance. T represents the length of input data of our model, and n represents 
the length of prices the model will predict.  

(T-point) – (n-step) n  

1 2 3 4 

60 days – n days 295.630 571.784 583.040 747.191 
60 days – n weeks 1060.331 1487.104 2337.846 3717.012 
60 days – n months 3495.360 3875.256 4097.356 5171.829  

8 weeks – n weeks 1189.644 1723.072 2990.677 4223.840  

Table 7 
The impact of different T-point (daily) on the forecasting performance (RMSE) of 
the 14-step prediction.   

T  

20 40 60 80 100 

ARIMA 2164.77 2164.77 1392.61 2164.77 2164.77 
ARIMAX 2911.10 2911.1 2147.59 2911.10 2911.1  

CNN 1885.96 2645.37 3044.91 3334.99 3429.67 
MLP 2705.88 2668.73 2675.22 2599.30 2662.09 
LSTM 2176.54 2820.98 2207.37 2235.02 1785.23 
Seq2Seq 1835.37 2265.31 2799.8 2600.29 2952.03 
BNN 2679.78 3013.07 1702.97 4163.76 5631.86 
TCN 1244.52 1320.71 1699.96 1564.68 1448.34  

WT-TCN 2443.00 2309.91 1588.55 3054.65 3967.12 
WT-CATCN 1651.83 1417.28 1204.09 1289.77 1395.33 

Bold values are the best performance results when we compare different 
parameters. 

Table 8 
The impact of different types of features on forecasting performance. We use M, 
X, B to represent market prices data, inter-exchange transactions data, social 
interest data respectively.  

Features M M + X M + B M + X + B 

Metric (RMSE) 1670.395 1350.864 1294.480 1204.091 

Bold values are the best performance results when we compare different 
parameters. 
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model with only the market price features by about 28%. 
To be more specific, the RMSE is 1670.395 when the input data 

contain only market price features. However, the performance is 
significantly improved, by 19%, when the input data contain both 
market price features and inter-exchange transaction features (the RMSE 
is 1350.864). Similarly, when the input features contain both market 
price features and social interest features, the performance can be 
improved by 22%. 

7. Conclusion and future work 

Despite the fact that the importance of cryptocurrency price fore
casting has been recognized by both financial market practitioners and 
researchers [4], how to better predict cryptocurrency prices given their 
highly volatile nature remains a vexing problem. In this paper, we focus 
on Bitcoin, the most popular cryptocurrency, and aim to solve this 
problem by (1) identifying the potential features that have impacts on 
the Bitcoin price from the perspective of underlying blockchain trans
actions; and (2) examining the proposed model’s performance with re
gard to Bitcoin price forecasting. 

First, although factors such as user comments and blockchain fea
tures have been examined in previous literature to test their impacts on 
Bitcoin price forecasting [8–10], there is still a lack of careful consid
eration of the potentially involved factors. To address this concern, we 
integrate factors including the transaction volumes of inter-exchange 
transactions, the market prices of inner-exchange, and the Google 
Trend search data that capture social interest. 

Second, we propose a deep learning method called WT-CATCN. By 
leveraging Wavelet Transform (WT) and Casual multi-head Attention 
(CA) in the Temporal Convolutional Network (TCN), we are able to 
accurately forecast time-series data with high fluctuation (e.g., Bitcoin 
price), because our model is able to focus on the key parts of the input 
data while also modeling the correlations among the data. 

Third, we conduct a series of experiments based on real-world data to 
show that our model can effectively forecast the Bitcoin price and cap
ture its movement patterns (e.g., rising and falling), even in the highly 
fluctuating situation. To find appropriately complex models and meet 
the requirement of accuracy, we compare our model with various 
existing models, and the experiment results show that our WT-CATCN 
model outperforms the state-of-the-art models by at least 25% in 
terms of the RMSE metric. 

Our research fills an important gap in the information systems 
literature on blockchain technology and cryptocurrency by proposing 
and validating a model that facilitates better price forecasting for 
cryptocurrencies in general and Bitcoin in particular. First, we analyze 
the features which may affect the Bitcoin price, and we find that the 
volume difference between big and small exchanges contributes signif
icantly to the price forecasting. This finding is also of great value for 
financial market practitioners because it helps to broaden the consid
eration set for variables used when these practitioners make investment 
decisions on the cryptocurrency market. Second, the model we proposed 
in this paper, WT-CATCN, has been validated using real-world Bitcoin 
data and provides a rigorous alternative model when the traditional 
models fail to predict prices with high volatility. The managerial im
plications of our work are obvious, as firms can apply our proposed 
methodology to enhance their cryptocurrency price forecasting perfor
mance. As a result, the problem of predicting cryptocurrency prices with 
a high volatilely nature is alleviated, customer satisfaction is increased, 
and firms achieve sustainable competitive advantages. 

For future work, first, we have validated our model using Bitcoin’s 
historical transaction data in the current research. In addition to Bitcoin, 
there are other cryptocurrencies available in the market, such as 
Ethereum and Litecoin. To ensure the generalizability of our model, we 
need to evaluate it using other cryptocurrencies’ price data. Following 
the same logic, instead of daily data, we should also investigate the price 
forecasting performance of our model using a more granular dataset, 

such as 15-min or hourly data. Third, it would be interesting to inves
tigate more algorithms that can improve the price forecasting perfor
mance of our model. For instance, it may help our model to focus on the 
useful positions if we increase the number of network layers to build a 
deeper neural network or design a more concise and efficient attention 
function. Finally, cryptocurrency market practitioners will receive the 
most benefit from this study if we deploy our model in an online fore
casting tool in the near future. 
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