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Abstract. Automatic speaker verification (ASV) has been widely
applied in a variety of industrial scenarios. In ASV, the universal back-
ground model (UBM) needs to be trained with a large variety of speaker
data so that the UBM can learn the speaker-independent distribution of
speech features for all speakers. However, the sensitive information con-
tained in raw speech data is important and private for the speaker. Accord-
ing to the recent European Union privacy regulations, it is forbidden to
upload private raw speech data to the cloud server. Thus, a new ASV
model needs to be proposed to alleviate data scarcity and protect data
privacy simultaneously in the industry. In this work, we propose a novel
framework named Federated Speaker Verification with Personal Privacy
Preservation, or FedSP, which enables multiple clients to jointly train a
high-quality speaker verification model and provide strict privacy preser-
vation for speaker. For data scarcity, FedSP is based on the federated
learning (FL) framework, which keeps raw speech data on each device
and jointly trains the UBM to learn the speech features well. For privacy
preservation, FedSP provides more strict privacy preservation than tra-
ditional basic FL framework by selecting and hiding sensitive informa-
tion from raw speech data before jointly training the UBM. Experimental
results on two pair speech datasets demonstrate that FedSP has superior
performances in terms of data-utility and privacy preservation.

Keywords: Speaker verification + Federated learning - Privacy
preservation - Sensitive information

1 Introduction

Automatic speaker verification (ASV) aims to verify whether a speech belongs to
a specific speaker based on the speaker’s known utterances. ASV has become a
© Springer Nature Switzerland AG 2022

Y. Lai et al. (Eds.): ICA3PP 2021, LNCS 13157, pp. 462-478, 2022.
https://doi.org/10.1007/978-3-030-95391-1_29


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-95391-1_29&domain=pdf
https://doi.org/10.1007/978-3-030-95391-1_29

FedSP: Federated Speaker Verification with Personal Privacy Preservation 463

common verification way in terms of forensics and security. For instance, many
commercial smart devices such as mobile phones, Al speakers, and automotive
infotainment systems have adopted machine learning-based ASV for unlocking the
system or providing a user-specific service. In universal background model (UBM)
based ASV, UBM needs to be trained with a large variety of speech data so that
the model can learn the speaker-independent feature distribution of all speakers
[4,13,22,25]. However, the raw speech data that contains sensitive information is
not allowed to upload to the server [3,5,23] according to European Union General
Data Protection Regulation (GDPR) [24], which is a privacy preservation regula-
tion. For example, sharing the raw speech data with the server will not only disclose
the identity of the speaker but also make the ASV systems vulnerable to spoofing
attacks [27,28]. Thus, a new ASV model needs to be proposed to alleviate data
scarcity and protecting data privacy simultaneously in the industry.

ASV systems based on federated learning (FL) [9,11,29] can jointly train a
high-quality speaker verification model with multiple clients to alleviate the data
scarcity problem via repeatedly communicating model parameters, e.g., model
weights or certain statistics, between client and server. However, sharing the
parameters of ASV in the FL framework is still not secure enough due to it may
also disclose user’s privacy when using the raw speech data including sensitive
information to training model [30]. For example, through model inversion attack
[6] the malicious attackers can reconstruct the speaker biometric templates when
getting the parameters uploading from the client, thereby leaking the privacy
of speaker. Recently, several cryptographic techniques are merged with the FL
framework to overcome the above security and privacy issues [1,18]. However,
cryptographic based FL frameworks bring heavy overhead and significantly slow
down the verification process, which makes it is unsuitable for ASV. Therefore,
it is necessary to develop new privacy preservation technologies for FL based
speaker verification systems.

In this work, we propose a novel framework named Federated Speaker Verifi-
cation with Personal Privacy Preservation, or FedSP, that can alleviate data
scarcity and provide strict privacy preservation at the same time. For data
scarcity, FedSP is based on federated learning (FL) framework that can jointly
train the UBM well with multiple clients while retaining the raw speech data on
each device. For privacy preservation, except for the default privacy preservation
provided by the FL framework, FedSP provides more strict privacy preservation
by selecting and hiding the sensitive information from the raw speech data before
jointly training the UBM. Especially, sharing the parameters of the model dur-
ing the model training with sensitive information related to the identity of the
speaker may disclose the privacy of speaker. Hence, we try to select and hide
the sensitive information of raw speech data and then we formulate the selecting
process as an NP-hard integer programming problem. Furthermore, a heuristic
greedy search algorithm is proposed to obtain a suboptimal solution for the inte-
ger programming problem. In summary, the main contributions of this paper as
follows:
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— FedSP is the first large-scale distributed speaker verification framework based
on GMM-UBM, which can simultaneously overcome data scarcity and privacy
leakage issues.

— In order to protect the privacy of each client, FedSP tries to select and hide the
sensitive information from raw speech data. FedSP formulates the sensitive
information selection process as an NP-hard integer programming problem.
In this work, we propose a heuristic greedy search algorithm to solve it.

— Experiments on two pair speech datasets validate the effectiveness of FedSP
in data-utility and privacy preservation.

The rest of this paper is organized as follows. In Sect. 2, we briefly review the
related literature. In Sect. 3, we detail our proposed FedSP framework, followed
by experimental results and analyses in Sect.4. We finally conclude the work in
Sect. 5.

2 Related Work

ASV arises unique privacy concerns, because speech data that are used to train-
ing the speaker verification model is closely related to the identity of speakers.
Several works have been proposed to overcome the privacy challenges in ASV.
And these works can be divided into two categories.

For the first category, they mainly focus on corporating cryptographic encryp-
tion or salting techniques with existing ASV methods to protect the privacy of
speaker. For example, Pathak and Raj et al. [19] merges GMM with Homo-
morphic encryption (HE) and Secure Multi-Party Computation (SMPC), and
summarize how to perform inference and classification on the encrypted GMM-
based speaker verification. Manas et al. [20] applied locality sensitive hashing
(LSH) transformation to convert and protect speech signals. Yogachandran et
al. [21] cooperated randomization technique to propose an i-vector [4] based ver-
ification model to verify speakers’ voice in the randomized domain. However, all
these methods assume the server needs to collect a large variety of speech data
to train the universal background model, which is forbidden by GDPR.

For the second category, these methods are based on the FL framework to
jointly training the ASV model with local speech data of users by repeatedly com-
municating the model weights between a server and a group of users. Recently,
FL is widely used in many applications such as topic modeling [12], mobile key-
board prediction [15], and visual object detection [17]. However, there only a
few work research the problem of using FL framework to preserve the speakers’
privacy in ASV. For example, Filip Granqvist et al. [9] using the side information
of local speaker, e.g., gender and emotion, to construct an auxiliary model to
enriching the speaker embedding network based on the FL framework. However,
this method focuses on protecting the privacy of side information rather than
the speech data. Hossein Hosseini et al. [11] proposed a framework for train-
ing user authentication models named FedUA, which adopts FL framework and
random binary embedding to protect the privacy of raw inputs and embedding
vectors based on neural networks, respectively. However, FedUA doesn’t provide
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any privacy preservation on the model weights, which make it is vulnerable to
model inversion attack. In general, the above works can’t simultaneously allevi-
ate data scarcity and protect data privacy for ASV. In this paper, we give an
in-depth consideration of how to jointly training ASV model while protecting
user’s privacy in the FL framework.

3 Framework

As demonstrated in Fig. 1, FedSP is composed of three computational modules:
client computation, server merging, and client verification. (1) In the client com-
putation module, we propose a heuristic greedy search algorithm to select and
hide the sensitive information from the raw speech data, so that the Baum-
Welch statistics [4] leaning in the local client will not contain sensitive infor-
mation. (2) In the server merging module, the server collects the Baum-Welch
statistics of each client and assign updated parameters of UBM to all clients.
The Baum-Welch Statistics contain acoustic and phonetic variations in speech
data, so merging and using it to update the parameters of UBM can make the
UBM fits the acoustic channels of the training data. And the privacy of the
speaker will not be disclosed via server and transmission attacks, because the
Baum-Welch statistics are calculated based on data that does not contain sen-
sitive information. (3) In the client verification module, each client receives the
UBM parameters from the server and derives the hypothesized speaker model
based on the local raw speech data contained sensitive information. The sensitive
information contained in raw speech data is closely related to the identity of the
speaker, so each client can achieve a satisfactory verification performance.

4 Client Computation R
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Fig. 1. Federated speaker verification with personal privacy preservation pipeline.

3.1 Client Computation

In this section, we first describe the algorithm for selecting and hiding sensi-
tive information from the raw speech data to protect the privacy of each client.
Second, each client executes local UBM learning to get the Baum-Welch statis-
tics without containing sensitive information. At last, clients transmit the local
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Baum-Welch statistics without sensitive information to update the parameters
of UBM on the server.

Selecting and Hiding Sensitive Information. In this subsection, we present
how to select and hide sensitive information (SHS) in detail. In SHS, the sensi-
tive sample is the training vector that closely relates to the sensitive information
[5,14,23]. The goal of SHS is to select and hide the sensitive samples from the
raw speech data to calculate the Baum-Welch statistics without sensitive infor-
mation of speaker on local client. Therefore, the speaker’s privacy will not be
disclosed, when the malicious attackers intercept the Baum-Welch statistics. In
GMM-UBM, each training vector of speech data can be divided into different
gaussian components in GMM. So we perform sensitive sample selection at the
gaussian components level. SHS selects f (i.e., selected fraction) percentage of
components containing sensitive information, and then delete the sensitive sam-
ples based on that components. In SHS, we first divide the training vectors
into different gaussain components according to the posterior probabilities of
each training vector. Then we define the personal confidence score of each gaus-
sian component and the distance between two gaussian components. Finally, the
sensitive components selecting process is formulated as an integer programming
problem, which is to select a set of gaussian components with maximizing total
personal confident score and distance.

Personal Confidence Score of Gaussian Component. The personal confidence
score (pes) of a gaussian component is defined as the log-likelihood difference
after the vectors belonging to the component are deleted. Therefore, pcs can
reflect the importance of the component for the speaker. For example, the larger
value of pcs the component has a higher sensitive level. The personal confidence
score pes; of the i-th component can be calculated as follows:

_AX) - AX)
pcs; = T7
A(X) = log(p(X‘)‘spkl))v (1)

A(X) = log(p(X)Aspr1)),

where X = {x1,...,z7} is the raw training vectors of each client and X is the
training vectors that do not include the vectors belong to the i-th component.
And p(-) is the probability density function of GMM. Aspx1 and Xspkl are the
GMM model derived from UBM, based on X and X, respectively.

Distance between Gaussian Components. It is not enough to select sensitive
components based on pcs, because we may select similar components with large
pes values. For instance, if the selected components are in the same area of the
acoustic space, sensitive components located in other areas can still cause privacy
leakage. In order to ensure the diversity of the selected sensitive components,
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we design a new indicator. In SHS, we recommend ensuring that the distance
between all selected components is as large as possible. The distance d; ; between
two components ¢; and ¢; is calculated below:

m

dij = | > (Hin+1in), (2)

h=1

where p1; p, is the h-th elements of u; and p; is the mean vector of components c;
n Aspk1- f14,n 18 the h-th elements of p; and p; is the mean vector of components
Cj in >\spk1-

Optimization Formulation and Solution. As aforementioned, we want to select
those gaussian components with maximizing personal confident score and total
distance. The objective function of SHS is defined as below:

maprcszsl —&-aZZdus 55, (3)

)

where s; = 1 (or 0) indicates that component ¢; is selected (or not) and )", s; =
f*M, pcs; denotes the personal confidence score of component ¢; and d; ; denotes
the distance between component c¢; and ¢;. o is a trade off parameter and M
is the number of gaussian components in GMM. The optimization in Eq.3 is
a typical 0-1 integer programming problem [8,26], which has been shown as a
NP-hard problem with O(2M ) search space in exhaustive search. In this work,
we propose a greedy component search algorithm (GCS) to solve this problem.
Next, we will introduce the GCS in detail.

In GCS, the selected component subset starts from Sg = @ and adds one
component for each step. Supposing that I’ is the index of gaussian component
selected in the [-th step, and component ¢,y will be added in the component set
S.

S =8,_1Ucp, (4)

the components in S; = {cy|i = 1,...,1} should meet Eq. (5):

max Z:pcsZ JraZZdz Bt (5)

i=1 j#i

since d; j = dj;, S; D Si—1 and S;_1 = {cy|i =1,...,1 — 1}, we can rewrite Eq.
(5) as:

-2 I— -1
max chsl +2az Z dy ;) + (pesy +2azdi’,l/))v (6)
i=1 j=i+1 =1

note that the first part in Eq. (6) is a constant concerning the components
selected in the previous [ — 1 steps and the goal becomes to select the component
maximizing the second part. So the component ¢;: selected in [-th step is



468 Y. Wang et al.

-1
cp = argmax pcs; + QOZZdi,j/v (7)

ci€ESM—_1-1 j=1

where Spyr—1—1 = {ci|lei € Si—1,i=1,..., M}.

Selecting and Hiding Sensitive Samples. After getting the component set S y.as
that contains sensitive information, we can use it to select sensitive samples.
The posterior probability of component ¢ generating the vector x; € X is the
indicator to select the sensitive samples. The training vector is recognized as a
sensitive sample when the posterior probability of the training vector on compo-
nent c; is greatest and ¢; € Sy.psr. The sensitive samples will be deleted from the
raw training vector X to hide the sensitive information. X is the vectors, which
delete the sensitive samples from X. The posterior probability r. ; of component
c generating the training vector x; is as follows:

wo,cN (Tt 1,0, 00,c)
7§ ;
Zj:l wO’jN(wt |N0,j» 0'07]-)

(®)

Tet =

where wo j, g j, and g ; are the mixture weight, mean vector, and diagonal
covariance matrix of j-th component of UBMj, respectively. M is the number
of Gaussian components of UBMj. the parameters of UBMj are collectively
represented by the notation \g = {wo j, poJ,a’O,j}, where j =1, ..., M.

The detail of SHS is shown in Algorithm 1.

Algorithm 1. SHS

1: Input: raw training vector X, pre-trained model UBMgy. PCS = {pcsi|i =
1,..., M}, D= {di ;i # 7,4, € {1,..., M}}, and selected fraction f;

2: Output: X;
3: Initially So = @ and X = O;
4: fori=1to f* M do
5: search for the new component ¢;; according to Eq.(7);
6: update the other components according to their distance with c;/:
pes; «— pesj 4+ 2o X dy j,  §F i
7: add ¢;s to the set S;, S; = 5;,-1 Ucy;
8: end for
9: fort=1to T do
10: get the component ¢’, which has the greatest probability of ; come from it:
¢ = argmax 7.
ced{l,...,M}

11: if ¢ € Ss«m then
12: X =XUuaz;
13: end if

14: end for
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Local UBM Learning. To alleviate the problem of privacy leakage, each local
client is the workhorse for UBM learning in FedSP. Especially, FedSP calculates
the Baum-Welch statistics on local clients, and that statistics will be uploaded
to the server. Thus the Baum-Welch Statistics contain acoustic and phonetic
variations in local speech data. At the same time, to prevent the privacy leakage
by the Baum-Welch statistics each client using the training vectors processed by
SHS, i.e., X, instead of raw training vector X to do UBM learning. Based on the
global UBMj received from the server and X = {1, ...,z;}, we first compute
the posterior probability 7., of @; on the c-th component of UBM, as Eq. (8).
Then 7. is used to calculate the Baum-Welch statistics 7, and 2’ as follows:

T T
#= St 2= re (9)
t=1 t=1

where [1] is the vector created by filling unit elements and the dimension of it is
m. i is the index of client. 7!, and 2!, will be sent to the server for UBM updating.
The Baum-Welch statistics do not contain sensitive information, so the privacy
of the client will not be disclosed.

3.2 Server Merging: UBM Updating

To alleviate the problem of data scarcity, the server updates the parameters of
UBM to model the general acoustic features well. And the UBM updating is
based on the Baum-Welch statistics uploaded from local clients. UBM updating
on the server needs the help of # and 2}, which are uploaded from the client

i. The Baum-Welch statistics are firstly pooled together to form the pooled

statistics:
K K
Te= Zf'lca Z. = Z 2?:7 (10)
i=1 i=1

where 7, and 2", denote the Baum-Welch statistics transmitted from client i with
privacy preservation provided by SHS. And K is the number of training clients
participating in UBM updating.

Then the server uses the pooled statistics to update the parameters of UBM,
to get UBMy, Ay = {w1 j, 4y j, 01} and j = 1,..., M, according to the following
formula:

Zc + AUO‘C H‘O,c
iu’l,c = %a (11)

OUBM

where dypm represents the covariance prior to indicate that the prior is used for
UBM update.
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3.3 Client Verification

Local Speaker GMM Adaption. In FedSP, each client derives the speaker’s
GMM model by adapting the parameters of the UBM; based on the raw training
vectors X. The speaker’s GMM model contains sensitive information, which is
closely related to the identity of speaker, so each client can verify the identity of
a new speech accurately. r. and z. calculated based on X according Eq. (9) are
the key parameters for adapting the speaker’s GMM. Then, r. and z. are used
to adapt the c-th component of the speaker’s GMM, As = {ws ;, M js o} and
j=1,..., M, with the following equation:

o1
Zc + 3 CI’l’l,c

Os
By o= mir}kla (12)

Ospk

where 64,k indicates the prior for speaker model adaptation.

Local Speaker Verification. Each client can use the global UBM; and their
GMM model g to compute the log-likelihood ratio to verify the identity of new
speeches [22]. Given a new segment of speech X4+ and the hypothesized speaker
S, the task of ASV is to determine if Xjio4 is spoken by S. Mathematically,
speaker verification can be formulated as:

A(Xtest) = Ing(Xtest ‘)\s) - Ing(Xtestp\l)

A(Xiest) >0 Xyest is from the hypothesized speaker S (13)
A(Xiest) < 0 Xitest is not from the hypothesized speaker S,

3.4 FedSP Workflow

The algorithm of FedSP is presented in Algorithm 2. During the client computa-
tion stage, each client first selects and hides sensitive information from the raw
speech data according to Algorithm 1. Then each client calculates the Baum-
Welch statistics based on the training vectors without sensitive information and
uploads the statistics to the server. After that, the server collects the Baum-
Welch statistics of each client and assigns update parameters of UBM to all
clients. Finally, each client receives the parameters of UBM and uses it to derive
the speaker’s GMM model based on the raw speech data.
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Algorithm 2. FedSP

1: function SERVERMERGINGUBMUPDATING( ):

2 initialize UBMo;

3 for each Guassian Component ¢ from 1 to M in UBM, do
4: r.=0, z. =0;

5: for each local speaker ¢ from 1 to K do

6.

7

8

72, 3¢ = CLIENTCOMPUTATION(UBMo, f,c);
Te=Tc+ b, Zo = Ze + 2
: end for
9: update UBM from UBMg to UBM; according Eq.(11);
10: end for
11: return UBM;;
12: end function
13:
14: function CLIENTCOMPUTATION(UBMy, f,c):
15: get the training speech of speaker i, X;, and processed by SLPP to get Xi;
16: calculate PCS and D according Eq.(1) and Eq.(2), respectively;
17: X =SHS(X,UBM,,PCS.D.,f);

18: calculate 7. and 2. based on X just as Eq.(9);

19: return 7., Z;
20: end function
21:

4 Experiments

In this section, we first introduce datasets and corresponding settings used in
experiments. Second, we introduce the evaluation metrics used in this work.
Third, we conduct experiments to verify the effectiveness of FedSP in solving
data scarcity and privacy preservation problems. Finally, we state the privacy
preservation capability and do the parameter study of FedSP.

4.1 Dataset and Configurations

We conduct our experiments using four real-world speech datasets which include
SUDI12 [16], ST-AEDS-20180100_1", Aishell [2] and TIMIT [7]. The SUD12
dataset contains 61 Chinese speakers and each speaker produces 100 utterances.
The ST-AEDS-20180100_1 dataset contains 10 native English speakers and each
speaker records about 350 utterances under a silent in-door environment using
cellphones. The Aishell dataset contains 400 Chinese speakers under 11 domains
such as science & technology, finance, and sport. The TIMIT speech dataset con-
tains 630 speakers of eight major dialects of American English and each speaker
reads ten phonetically rich sentences.

The four datasets are divided into two pairs. The first pair of datasets consists
of SUD12 and Aishell datasets, which are Chinese speech datasets. In this pair,

! http://www.openslr.org/45/.
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we use the SUD12 to pre-training the UBM on the server and each client gets
one speaker’s data of Aishell. The second pair of datasets consists of ST-AEDS-
20180100-1 and TIMIT datasets, which are English speech datasets. In this pair,
we use the ST-AEDS-20180100_1 to pre-training the UBM on the server and each
client gets one speaker’s data of TIMIT.

In this experiment, we first use Mel Frequency Cepstral Coef-ficients
(MMFCs) method to extract features of speakers from speech dataset. Specially,
the dimension of MMFCs is 60 (20 basic + first order + second order) using
a 25 ms Hamming window with 10ms shift. First order and second order are
calculated using a 2-frame window. Second, FedSP trains UBM with 256 Gaus-
sian components, i.e., M = 256. The value of 6spx = 0.5 and dygm = 0.07 in
local speaker GMM adapting module and server merging module, respectively.
a = 0.005 is used to balance the two terms in SHS. Third, K = 10, 100 and 200
speakers of different accents are selected randomly from Aishell and TIMIT,
respectively, and assigned to different clients. For each client, three sentences
were used to jointly training the UBM. At last, to test the performance of the
FedSP, we randomly select other 200 speakers that are different from the K
speakers used to jointly the UBM.

4.2 Evaluation Metrics

Verification Metric. The metric employed for performance evaluation is the
Equal Error Rate (EER). EER is the point that the False Acceptance Rate
(FAR) and False Rejection Rate (FRR) become equal. FRR and FAR measure
the classification error for target and non-target trials, respectively.

Privacy Metric. The metric employed for measuring the capability of privacy
preservation is Kullback-Leibler Distance (KLD) [10]. On the one hand, selecting
and hiding the sensitive samples from raw speech data inevitably reduce the
amount of data used, thereby increasing EER. Thus using EER to measure
the effectiveness of privacy preservation is not rational. On the other hand,
FedSP changes the real distribution of the speaker’s GMM model by hiding
the sensitive samples from the raw training vectors. Therefore, the speaker’s
real biometric template cannot be reconstructed, when the malicious attackers
intercept the Baum-Welch statistics. The smaller the KLLD between different
speaker’s model reconstructed by the server, the smaller the difference between
the Baum-Welch statistics calculated by different clients. And the Baum-Welch
statistics calculated on local clients contain less sensitive information about the
speaker.

4.3 Verification Performance

In FedSP, we jointly train the UBM with multiple clients. In this section, we
compare two classical framework learning scenarios in two pair of speech datasets
for demonstrating the effectiveness of FedSP in data utility. The details are as
follows:
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— Baseline: This baseline is straightforward. Participants derive their own
speaker model based on the pre-trained model without any collaboration.

— Center: It is a classical training process for ASV. In this case, the speaker’s
raw speech data are centrally collected and trained in the server first. Then,
the server transmits the parameters of well-trained UBM to the clients and
clients derive the speaker’s model based on it locally.

The comparative results over two datasets between FedSP and the above method
for speaker verification are summarized in Table 1. For the Baseline, we found it
is the worst since it cannot handle the data scarcity problem and local clients
directly apply the pre-training UBM to derive the speaker’s model. For Center
and FedSP, they remarkably outperform the Baseline and have lower EER scores
as the number of training clients increases. This is because they solve the data
scarcity problem by using the users’ speech data to jointly train UBM. The
performance of FedSP is slightly worse than Center. However Center needs to
upload all raw speech data of each client to the central server and FedSP only
uploads the Baum-Welch statistics without sensitive information to the central
server. Hence, only FedSP can protect the privacy of participants with remain
satisfied speaker verification performances.

Table 1. EER scores of three approaches on Aishell and TIMIT datasets.

Method Baseline | Center FedSP

Training Clients K | N/A 10 100 [200 |10 | 100 | 200
Aishell 5.67 2.36 [0.57/0.58 12.25|1.5 |1.39
TIMIT 7.26 4.8413.132.61|4.88|3.58|3.36

4.4 Effectiveness of SHS in FedSP

The main contribution of this work is that FedSP can protect the privacy of
speaker, which is done by hiding the sensitive information from the raw training
vectors. The way to show the effectiveness of SHS is to verify whether the Baum-
Welch statistics collected from clients will disclose the privacy feature of speakers.
When SHS is effective, the Baum-Welch statistics learning by different clients
should be more and more alike, and vice versa. And we design the following
experiment to verify the effectiveness of SHS:

— FedSP;nTER: In this method, we first use the Baum-Welch statistics that are
calculated on the training vectors processed by SHS to reconstruct the GMM
model for each client. Then, the KLD is calculated between two different
clients’” GMM models.

— FedRS;n7rR: When the SHS of FedSP is replaced by RS (random sampling),
the new framework is named as FedRS. So, in FedSR we randomly delete the
same number of vectors as SHS no matter whether the vectors are sensitive
samples or not. And the KLD of FedRS 7 gR is calculated as FedSP ;nyTER.
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Figure2 compares the KLD of the above two methods on Aishell and TIMIT
datasets. It can be observed that the KLD of FedSP;nrrr and FedRS;NTER
decreases as the selected fraction f increases. This is because that the more
sensitive samples are deleted, the fewer sensitive information is included. So the
Similarity between the reconstructed GMM models becomes larger. Except for
that, the gap between FedSP;nyrpr and FedRS; y1gR increases, which indicates
that SHS is more effective than RS in selecting and hiding sensitive information.

4.5 Privacy Preservation Capability

In this section, we need to define the privacy preservation capability of FedSP and
determine when FedSP can provide strict privacy preservation. The stricter the
privacy protection, the less sensitive information contained in the Baum-Welch
statistics, which are calculated on the training vectors processed by SHS. We
say that FedSP can provide strict privacy preservation for speakers when mali-
cious attackers can’t intercept sensitive information about the speakers from the
Baum-Welch statistics. Except for FedSP;yrgr, which calculates the KLD of
different speakers, we also design a new method named FedSP; 1R to calculate
the KLD of the same speaker.
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Fig. 2. The effectiveness of FedSP on Aishell and TIMIT datasets.

— FedSP;nTRA: For each client, we calculate the KLD between the real
speaker’s GMM model get by Eq. (12) and the reconstructed GMM model.

Figure3 compares FedSP;nrrpr and FedSP;nyrra on Aishell and TIMIT
datasets. As shown in the Fig.3, the KLD of FedSP;nrgrgr decreases and the
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KLD of FedSP; 1R increases as the selected fraction f increase. This is because
that as f increase, SHS select and hiding more and more sensitive information
for each client. So the sensitive information contained in the statistics which
are upload from clients gradually decreases. Besides that, it also can be found
that the KLD of FedSP;yrrr and FedSP;nrRra overlap for Aishell and TIMIT
dataset, when f is around 0.75. And We state that FedSP can provide strict
privacy preservation when the f is greater than or equals to 0.75 for Aishell and
TIMIT dataset. In this case, the Baum-Welch statistics of different speakers that
are upload to the server are similar and do not contain sensitive information. So
the Baum-Welch statistics can not disclose the privacy of speakers.

4.6 Parameter Study

FedSP has two main parameters training clients K and selected fraction f.
The verification performance of FedSP is determined by these two parameters
together. So in this subsection, we investigate the verification performance of
FedSP under different values of these two parameters in Aishell and TIMIT
datasets. As shown in Fig. 4, the EER score of FedSP decreases with more train-
ing clients and increases with the value of selected fraction increases in both
Aishell and TIMIT datasets. In each plot, we show the EER score for Baseline,
which is independent of the x-axis. We state that FedSP can provide strict pri-
vacy preservation when the f is greater than or equals to 0.75 for Aishell and
TIMIT dataset In Sect.4.5. And in Fig. 4, we also find that f = 0.75 for Aisell
and TIMIT is a turning point of verification performance. Before the turning
point, the EER increases slowly. After the turning point, the EER increases
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Fig. 3. The privacy preservation capability of FedSP on Aishell and TIMIT datasets.
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rapidly. What’s more, FedSP still outperforms Baseline when FedSP provides
strict privacy preservation. So FedSP can offer an attractive trade-off between
data utility and privacy.
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Fig. 4. Verification performance of FedSP with different selection fraction f and train-
ing clients K on Aishell and TIMIT datasets.

5 Conclusion

This paper presents a novel framework named FedSP that allows multiple mobile
clients to cooperatively train the UBM to solve data scarcity problem while pro-
viding strict privacy preservation for participants. In the jointly training proce-
dure, each client executes local learning on the training vectors without sensitive
information so that the Baum-Welch statistics learning in local clients will not
disclose the privacy of speaker. The sensitive information selection process is
formulated as an integer programming problem, and we proposed a heuristic
greedy search algorithm to tackling the problem. With the federated architec-
ture in FedSP, a server and a series of clients jointly train a UBM that can
model the speaker-independent distribution feature well. To justify our model,
we conducted extensive experiments over two speech datasets. We notice that
the experimental results support the following points: first, FedSP can alleviate
the data scarcity problem; second, through selecting and hiding the sensitive
information, FedSP can provide strict privacy preservation.
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