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Abstract. Fetal head circumference (HC) is a key biometric indicator
in prenatal ultrasound, essential for gestational age estimation and fetal
growth assessment. However, conventional Convolutional Neural Net-
works (CNN)-based segmentation models often struggle to capture long-
range dependencies, which hinders segmentation accuracy. To address
this, we introduce Swin-DAG-VNet, a hybrid segmentation model which
builds upon the Deeply Supervised Attention-Gated V-Net (DAG V-Net)
as the baseline and integrates Swin Transformer to enhance global context
modeling while preserving fine-grained structural details. Additionally, we
incorporate Swin-Net-Add, a Transformer-enhanced feature fusion mod-
ule, to improve multi-scale feature aggregation and boundary delineation.
Furthermore, we employ an elliptical parameter regression method to pre-
dict key biometric parameters from the segmented contour, combines with
an adaptive contour sampling strategy to refine segmentation, reducing
noise and improving robustness. A physical calibration module ensures
accurate real-world HC measurements. Experiments on the HC18 dataset
demonstrate that Swin-DAG-VNet achieves an absolute difference (AD)
of 1.78 mm, reducing absolute measurement bias by 5.3% compared to
DAG V-Net, setting a new benchmark in the estimation of fetal HC.

Keywords: Fetal Head Circumference Measurement + Swin
Transformer - Medical Image Segmentation - Elliptical Parameter
Regression

1 Introduction

Fetal HC measurement plays a crucial role in prenatal ultrasound analy-
sis, as it provides vital biometric information for gestational age estimation
and fetal growth assessment. Accurate HC measurement is essential to detect
abnormal growth patterns, such as intrauterine growth restriction (IUGR) and
macrocephaly. Traditionally, HC measurements are performed manually by sono-
graphers, introducing inter- and intra-operator variability, which can lead to
measurement inconsistencies (Fig. 1). To address this challenge, automated fetal
HC measurement methods have been developed to improve accuracy and repro-
ducibility.
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Fig. 1. Illustration of fetal HC measurement in a prenatal ultrasound image.

Recent deep learning-based segmentation models have significantly improved
fetal head segmentation performance. Convolutional Neural Networks (CNNs),
such as U-Net [12], Attention U-Net [7], and V-Net [10], have achieved promising
results in medical image segmentation. However, these models primarily rely on
local feature extraction with limited receptive fields, which restricts their ability
to capture global contextual relationships. As a result, CNN-based models often
struggle with fetal head segmentation challenges, including low contrast, shadow
artifacts, and ambiguous boundaries in ultrasound images.

Recently, Vision Transformer (ViT) have demonstrated superior capability
in modeling global context, outperforming CNNs across various medical imag-
ing tasks [3]. Among them, the Swin Transformer [8], a hierarchical ViT variant,
has exhibited notable advantages in capturing multi-scale contextual informa-
tion while maintaining computational efficiency. However, directly applying the
Swin Transformer to fetal ultrasound segmentation remains challenging due to
the inherent characteristics of ultrasound imaging, including high noise levels,
domain shifts, and substantial anatomical variations.

To address these limitations, we propose Swin-DAG-VNet, a novel hybrid seg-
mentation model that integrates Swin Transformer and Swin-Net-Add [4] into
DAG V-Net [18]. Swin-DAG-VNet leverages the strengths of both CNNs and
Transformers: CNN-based local feature extraction ensures fine-grained anatom-
ical preservation, while Transformer-based global attention improves segmenta-
tion robustness and structural consistency.

Furthermore, accurate HC measurement requires precise ellipse fitting, which
is challenging due to segmentation noise and anatomical variability. Existing
ellipse fitting approaches, such as Hough Transform [11] and Least Squares
Method [5], often suffer from instability when applied to noisy ultrasound images.
To address this limitation, we propose an elliptical parameter regression method,
utilizing a multilayer perceptron (MLP)-based network to predict key ellipse
parameters. Additionally, we introduce a dynamic contour sampling strategy,
which adaptively selects high-confidence contour points, ensuring anatomically
consistent HC estimation.

Our key contributions are summarized as follows:

e We propose Swin-DAG-VNet, a novel Transformer-enhanced segmenta-
tion model that integrates Swin Transformer into DAG V-Net, significantly
improving fetal HC segmentation accuracy.
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e We introduce Swin-Net-Add, a Transformer-based multi-scale feature
aggregation module that enhances spatial consistency and boundary delin-
eation.

e We propose an MLP-based elliptical parameter regression method and
a dynamic contour sampling strategy to refine ellipse fitting, reduc-
ing segmentation-induced bias and ensuring anatomically consistent fetal HC
measurements.

2 Related Work

Traditional medical image processing methods such as Edge Detec-
tion [15], Hough Transform [11], and Least Squares Method (LSM) [5] are ini-
tially used for fetal HC measurement. These methods detect object boundaries
and fit geometric models to the fetal head contour. However, their reliance on
handcrafted features makes them highly sensitive to noise, shadow artifacts, and
ultrasound speckle patterns. Additionally, variations in fetal head shape and
occlusions often lead to inaccurate measurements, limiting their clinical appli-
cability.

CNN-based segmentation models have significantly advanced medical
image analysis and improved the robustness of fetal head segmentation. U-
Net [12] and V-Net [10] employ encoder-decoder architectures with skip connec-
tions to enhance feature representation. Variants like Pie-UNet [6] improve effi-
ciency by reducing computational complexity but remain constrained by CNNs’
inherent locality, limiting their ability to capture long-range dependencies in
ultrasound images.

To mitigate this limitation, attention-based models such as Attention U-
Net [7] and DAG V-Net [18] incorporate attention mechanisms to refine multi-
scale feature representations. DAG V-Net enhances feature selection via atten-
tion gates [14], while deeper architectures like DEEPAM [20] employ hier-
archical attention stacking to improve local feature extraction. However, these
models still primarily focus on local context, which may hinder segmentation
performance in challenging ultrasound images requiring global feature integra-
tion.

Recent advances in Transformer-based models address this issue by intro-
ducing self-attention for global context modeling. TransUNet [2] and Swin Trans-
former [8] extend Transformer-based architectures to medical image segmenta-
tion, while Swin-UNet [1] and MLFF-Transformer [19] improve boundary delin-
eation via multi-scale feature interactions. However, despite their ability to model
long-range dependencies, Transformer models often lack the strong local feature
inductive bias necessary for precise boundary detection in medical images.

To bridge the gap between local and global feature extraction, we propose
Swin-DAG-VNet, which integrates Swin Transformer into DAG V-Net. This
hybrid approach enhances segmentation robustness and boundary delineation.
Additionally, we introduce Swin-Net-Add, a residual fusion strategy for multi-
scale feature integration, and a dynamic elliptical parameter regression method
for precise HC measurement.
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3 Methodology
3.1 Data Preprocessing

In the data preprocessing stage, we filled the labeled masks in the training
set to enhance the model’s ability to effectively learn the fetal HC region.
First, we loaded and converted the labeled mask images to grayscale to facil-
itate subsequent edge detection. A binarization process was then applied using
a fixed threshold of 127, ensuring a clear segmentation of the target region and
distinguishing the foreground (fetal head-enclosed region) from the background
(non-enclosed region). Contour detection was subsequently employed to extract
the edge information of the fetal HC from the binarized images. Finally, the
resulting mask was filled with a uniform white value (255, 255, 255) to maintain
consistency with the original annotation format during the training stage [17].

3.2 Swin-DAG-VNet

Figure 2 illustrates the workflow of Swin-DAG-VNet, our segmentation-based HC
measurement model. The workflow begins with preprocessing, including image
normalization and data augmentation, followed by segmentation using Swin-
DAG-VNet, which extracts multi-scale features and captures long-range depen-
dencies through the Swin Transformer-based encoder. The resulting segmenta-
tion mask is then used for elliptical parameter regression, ensuring anatomically
consistent HC measurement.

Test Data

: Data
Augmentation
Data Preprocess

Data
Postprocess

Contour Fill Train Model Model Output_| Segmentation

Results

Models

Output Elliptical
Parameter

Values Ny
Regression

Fig. 2. Workflow of Swin-DAG-VNet for automated fetal HC measurement.

Unlike traditional CNN-based segmentation models, which rely on local con-
volutions, Swin-DAG-VNet introduces Transformer-based global feature model-
ing, effectively overcoming the limitations of CNNs in handling long-range depen-
dencies and spatial inconsistencies. The architecture consists of three key com-
ponents: Swin Transformer-based Encoder for global-local feature extrac-
tion. Swin-Net-Add Fusion Module for multi-scale feature aggregation.
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Attention-Gated Decoder for precise contour delineation and HC segmenta-
tion. Swin-DAG-VNet follows an encoder-decoder architecture, similar to DAG
V-Net, but replaces CNN-based residual concatenation with Swin Transformer-
based fusion, as shown in Fig. 3. This modification enhances long-range depen-
dency modeling and improves the accuracy of fetal head segmentation.
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Fig. 3. Architecture of Swin-DAG-VNet for fetal head segmentation.

Swin Transformer-Based Encoder for Global Context Modeling. The
Swin Transformer-based encoder replaces conventional CNN encoder to address
long-range dependency modeling. Unlike CNNs, which have a limited receptive
field, Swin Transformer leverages hierarchical self-attention mechanisms to effi-
ciently capture both global and local contextual information [8].

The input ultrasound image is first partitioned into P x P non-overlapping
patches, each mapped into a C-dimensional feature space via a linear projection:

Xpatch = Wp ' Xinput + bp (1)

where W), and b, are learnable projection parameters. This operation preserves
local texture details while ensuring a structured feature representation.

Swin Transformer block comprises two components: Windowed Multi-Head
Self-Attention, which performs self-attention within non-overlapping local win-
dows to reduce computation, and the Shifted Window Mechanism, which enables
cross-window interaction and mitigates information loss from window partition-
ing. Given an input feature map X € RT*WXC gelf attention is computed as:

QK"

Vg
where @, K,V are the query, key, and value matrices derived from feature embed-
dings; dj is the key dimension, ensuring numerical stability; B is the relative
position bias, improving spatial awareness.

Y = Softmax ( + B) Vv (2)
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By combining hierarchical self-attention and cross-window communication,
Swin Transformer-based encoding improves segmentation robustness.

Swin-Net-Add: Multi-scale Feature Aggregation. DAG V-Net originally
employs ResNet-Add [16] for feature fusion. However, this method is limited to
local feature interactions and cannot effectively model long-range dependencies
in ultrasound images. To address this, we introduce Swin-Net-Add, a feature
aggregation module that enhances multi-scale spatial consistency and improves
fetal head segmentation accuracy [4].

Unlike the element-wise addition typically used in CNNs, Swin-Net-Add inte-
grates Transformer-driven feature fusion, combining both global and local feature
representations. This is achieved via: 1) Cross-window attention, which facili-
tates feature propagation across neighboring receptive fields, improving bound-
ary delineation. 2) Feature fusion layers, which integrate high-level semantic
information with low-level spatial details, ensuring morphological integrity.

To handle feature maps at different resolutions, a 1 x 1 convolution is first
applied for channel alignment. The aligned feature maps are then processed
through the Swin Transformer layer, where the self-attention mechanism com-
putes long-range dependencies. Finally, feature aggregation is performed using:

Fagg = Wl . Ftrans + W2 . Fcnn (3)

where Fi,ans represents Transformer-based global features; Fip,y, represents CNN-
based local features; Wi, W5 are learnable weight parameters.

Attention Gated Decoder. The decoder employs an attentional gating (AG)
mechanism [14] to suppress irrelevant regions during the upsampling process,
ensuring a precise focus on the fetal head region. During decoding, deconvolution
layers are used to progressively restore spatial resolution while incorporating skip
connections from the encoder to enhance boundary recovery.

To further refine feature selection, an Attention Gating module is applied at
each decoding stage, dynamically learning the weight distribution of salient fea-
ture regions to suppress background interference and improve segmentation accu-
racy. Finally, a Sigmoid activation function is utilized to generate the binarized
segmentation mask, ensuring accurate delineation of the fetal head region. This
framework effectively integrates spatial and contextual information, enhancing
segmentation performance while mitigating extraneous influences.

3.3 Elliptical Parameter Regression Method

After segmenting the fetal head, the next crucial step is to accurately estimate
the HC. Instead of traditional direct contour fitting methods, we propose an
elliptical parameter regression method, which formulates HC estimation as a
parametric regression problem [13].

Algorithm 1 details the complete procedure, including contour extraction,
feature extraction, model training, and ellipse parameter prediction from the
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Algorithm 1. Elliptical Parameter Regression

Require: Binary ultrasound image set I € {0,255}7*W

parameters Pirue = (,y,a, b, 0)

Ensure: Predicted ellipse parameters Pprea = (2, ¥, a, b, 0)
1: Convert I to grayscale and apply binary thresholding: I, = Threshold(7, 127)
2: Extract contours C' = FindContours(Ipin)

3: Select the largest contour based on area: Crmax = arg max(Area(C))

4: for each image do

5.

6

and corresponding ellipse

Use the ground truth ellipse parameters Pirue
Perform adaptive sampling on Ci,ax to obtain representative contour points:

Cisampled = AdaptiveSampling(Crax, V)

Construct feature vector X € R?Y from the sampled coordinates
end for
Train a MLP with layers 512 — 512 — 256 — 128 and ReLU activations
: Optimize using the loss function: (o = 0.6 is a weighting parameter)

_
S L X

N
L= OZZ Hljtlrue - P;rede
i=1
11: for each test data Xiest do
12: Predict ellipse parameters:
Ppred = MLP(Xtest)
13: Convert the predicted parameters to physical dimensions:
Pphysical = (s, sy, sa/2,sb/2,0)
14: Adjust the orientation angle 0 as follows:

0 0+90, if 0 <90
- 90, otherwise

15: end for

16: Compute mean squared error (MSE) and intersection over union (IoU) to assess
prediction accuracy

17: return Predicted ellipse parameters Ppred

segmented contours. An adaptive contour sampling strategy is employed to pro-
duce fixed-length, shape-representative feature vectors for ellipse regression by
normalizing contours of varying lengths. For contours with >50 points (empir-
ically chosen for performance), we uniformly sample 50 evenly spaced points,
yielding sparser sampling for dense contours while preserving detail in simpler
shapes. For shorter contours, points are duplicated to maintain consistent dimen-
sionality. Although the method does not explicitly incorporate curvature or
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segmentation confidence, it effectively normalizes contour variability and pro-
vides a compact, informative representation for regression.

4 Experiments

Dataset Preparation and Augmentation. We use a dataset of 1334 two-
dimensional (2D) ultrasound images from the Department of Obstetrics and
Gynecology at Radboud University Medical Center, Netherlands. Each image
is a resolution of 800 x 540 pixels, with pixel sizes ranging from 0.052mm to
0.326 mm, depending on sonographer adjustments. To ensure a fair evaluation,
the dataset is split into 75% for training and 25% for testing, ensuring intra-
examination consistency [5].

To enhance training stability and prevent overfitting, extensive data aug-
mentation and dropout were applied. Each image was augmented 30 times
with random horizontal or vertical flips and rotations between —30° and 90°,
increasing the training set to 29,970 images. All images were resized to 768 x 512
to match the Swin-DAG-VNet input size. Dropout was also used during training
for regularization. These strategies improved shape-invariant feature learning,
ensuring robustness across varying fetal head orientations.

Implementation Details. To ensure stable training and fast convergence, net-
work weights were initialized using Xavier initialization, with dynamic adjust-
ments for activation functions (Sigmoid, ReLU, TanH) to maintain stable gra-
dient propagation. The bias term was set to 0.1 to prevent large initial biases.

ReLU activation was applied to mitigate the vanishing gradient problem and
accelerate convergence. The Adam optimizer was used with an initial learning
rate of 5x 1074, adjusted dynamically using an adaptive learning rate scheduler.
The loss function combined Dice loss and cross-entropy loss to improve segmen-
tation accuracy in the foreground region. The model was trained for 30 epochs
with a batch size of 2, tuned based on GPU memory constraints.

5 Results

To comprehensively evaluate the effectiveness of Swin-DAG-VNet, we conducted
a series of experiments under identical experimental conditions on the HC18
dataset.

To quantitatively assess segmentation performance, we employed HC abso-
lute difference (AD, mm), Dice similarity coefficient (DSC, %), HC difference
(DF, mm), and Hausdorff distance (HD, mm) as evaluation metrics.

Among these, AD and DF are the most clinically relevant metrics, as they
directly measure the accuracy of HC estimation. AD quantifies the absolute
difference between the predicted HC (HCpreq) and the ground-truth HC (HCly),
AD is defined as:

AD = |HCprea — HCygy| (4)
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Meanwhile, DF evaluates the signed difference between HC predictions and
ground truth, providing insight into systematic measurement biases:

DF = HCpyeq — HCyy (5)

where positive DF values indicate overestimation of HC, and negative DF values
indicate underestimation. A DF close to zero suggests minimal systematic bias,
contributing to more reliable HC estimation.

Quantitative Comparison. Our experimental results demonstrate that Swin-
DAG-VNet achieves the best AD and DF performance, significantly outperform-
ing other models. Swin-DAG-VNet achieved an AD of 1.78 +1.71 mm and a DF
of 0.11 + 2.47 mm, indicating enhanced HC measurement accuracy while main-
taining minimal systematic bias. Compared to DAG V-Net, Swin-DAG-VNet
reduced AD by 5.3% and DF by 76.1%, ensuring more precise and unbiased
HC estimation. Table 1 presents the results of the fetal HC segmentation and
measurement, on the HC18 test set for various deep learning models.
Meanwhile, to further assess the computational complexity and resource
requirements of the proposed model, we also conducted a comparative analysis
including the number of parameters, floating-point operations (FLOPs), and the
inference time. The inference time listed in the table is the measurement based
on a single-image inference, calculated by averaging 20 images from the HC18
test set. Swin-DAG-VNet integrates Transformer-based modules to enhance fea-
ture representation, which results in increased computational demands compared
to convolution-based baseline models. However, despite not having the lowest
parameter count or FLOPs, our model demonstrates a competitive inference
time, highlighting its practical feasibility for real-world clinical deployment.

Table 1. Comparison of different segmentation models for fetal HC estimation.

Model AD (mm) |DSC (%) DF (mm) [HD (mm) Params (million) FLOPs (G) Inference Time (second)
U-Net [12] 2.05+£1.92 95.624+2.35 0.89+£2.67 2.384+1.24 0.29 5.18 0.0352

nn-UNet [9] 1.98 +£1.83 |98.02 £ 1.051.22+2.40 [1.18 £ 0.6519.07 412.65 11.65

Attention U-Net [7]1.97 £1.98 97.91 +1.18 |-1.05+2.59/1.28 +0.81 |31.38 32.40 14.26

V-Net [10] 2.01£1.80 98.01+1.06 [1.16+2.44 |1.214+0.69 45.60 676.23 6.04

DAG V-Net [18] 1.88+£1.68 97.99£1.09 (0.4642.49 |1.22+£0.67 57.79 76.41 19.07
Swin-DAG-VNet 1.78 £ 1.71/97.92 £ 1.25 |0.11 & 2.47/1.27 £ 0.80 (65.17 95.16 10.08

Figure 4 presents the results of the fetal head segmentation obtained using dif-
ferent models. Segmentation performance varied between models, with noticeable
differences in contour smoothness and accuracy. Specifically, the U-Net model
exhibited irregularities and jagged edges in the segmented fetal head contour,
leading to a non-smooth shape. In contrast, Swin-DAG-VNet produced relatively
smooth contours, with only minor irregularities in certain regions.

Ablation Study. To evaluate the contribution of each key component in Swin-
DAG-VNet, we conducted a systematic ablation study by incrementally inte-
grating Swin Transformer and Swin-Net-Add into the baseline DAG V-Net. The
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Raw data U-Net nn-UNet  Attention V-Net DAG V-Net Swin-DAG-
U-Net VNet

Fig. 4. Comparison of the segmentation results for fetal head.

results of the ablation study on the HC18 test set are presented in Table 2.
The Swin Transformer module improved global feature extraction, reducing AD
by 3.7% (from 1.88mm to 1.81 mm) while enhancing segmentation stability, as
indicated by a slight decrease in DSC from 97.99% to 97.93%. Additionally, the
Swin-Net-Add module enhanced multi-scale feature aggregation and boundary
delineation, leading to a substantial reduction in DF from 0.46 mm to -0.36 mm,
thereby minimizing segmentation bias.

Table 2. Ablation Study on the impact of Swin Transformer and Swin-Net-add.

Model Variant AD (mm) [DSC (%) DF (mm) |HD (mm)
DAG V-Net (Baseline) [1.88 & 1.68 (97.99 £+ 1.09 [0.46 +2.49 [1.22 £ 0.67
+ Swin Transformer [8]1.81 + 1.74 |97.93 £ 1.24 [0.13 +2.51 [1.28 £ 0.83
+ Swin-Net-Add [4] 1.81+1.75 (98.01 £ 1.12|—0.36 + 2.49/1.22 + 0.72
Swin-DAG-VNet 1.78 £1.7197.92 + 1.25 |0.11 & 2.47 |1.27 + 0.80

Comparison of Ellipse Fitting Methods. Table3 presents a comparative
analysis of fetal HC measurement accuracy using different ellipse fitting meth-
ods, all evaluated under Swin-DAG-VNet. These results confirm that the ellip-
tical parameter regression method achieves the lowest AD, improving HC mea-
surement consistency and reducing segmentation-induced errors.

Table 3. Comparison of different ellipse fitting methods for HC measurement.

Method AD (mm) [DSC (%) DF (mm) HD (mm)
Hough Transform [11] 1.96 + 1.82/96.97 £ 2.17 |—0.06 * 2.67(1.90 &+ 1.06
Least Squares Method [5] 1.81 4 1.74/98.00 4= 1.12|—0.25 + 2.50 [1.22 + 0.71
Elliptical Parameter Regression|1.78 £+ 1.71/97.92 + 1.25 |0.11 £ 2.47 1.27 +£0.80

Figure 5 shows a comparison of ellipse fitting results based on Swin-DAG-
VNet. As shown, ellipses fitted by other methods exhibited angular shifts or
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image distortions in some cases. In contrast, the ellipses generated through ellip-
tical parameter regression were smoother and more closely aligned with the
segmentation results, demonstrating better consistency with the actual anatom-
ical structure of the fetal head. These findings suggest that elliptical parameter
regression enabled more accurate HC fitting, particularly in cases of irregular
fetal head shapes, thereby reducing measurement bias caused by segmentation
€rrors.

Segmetation Hough Least square Elliptical parameter
result transform method regression

Fig. 5. Comparison of ellipse fitting results for Swin-DAG-VNet.

6 Conclusion

In this study, we propose Swin-DAG-VNet, a novel hybrid Transformer-enhanced
model that integrates Swin Transformer and Swin-Net-Add module into DAG
V-Net, effectively enhancing global context modeling while preserving local
anatomical details. Swin-DAG-VNet surpasses DAG V-Net, achieving an abso-
lute difference (AD) reduction of 5.3% (from 1.88mm to 1.78 mm) and a mea-
surement bias (DF) reduction of 76.1% (from 0.46 mm to 0.11mm), demon-
strating superior segmentation accuracy and robustness in fetal ultrasound
images. Furthermore, we propose an elliptical parameter regression approach
that employs an MLP-based network to predict key elliptical parameters, thereby
reducing segmentation noise and ensuring anatomically consistent and accu-
rate HC estimation. Future work will focus on enhancing segmentation perfor-
mance in low-contrast fetal ultrasound images, exploring the potential of semi-
supervised learning to improve model generalization, and validating Swin-DAG-
VNet on larger, multi-center datasets to further assess its robustness and clinical
applicability.
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