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ABSTRACT

Existing anomaly detection models show success in detecting
abnormal images with generative adversarial networks on the
insufficient annotation of anomalous samples. However, ex-
isting models cannot accurately identify the anomaly samples
which are close to the normal samples. We assume that the
main reason is that these methods ignore the diversity of pat-
terns in normal samples. To alleviate the above issue, this pa-
per proposes a novel anomaly detection framework based on
generative adversarial network, called ADe-GAN. More con-
cretely, we construct a self-supervised learning task to fully
explore the pattern information and latent representations of
input images. In model inferring stage, we design a new ab-
normality score approach by jointly considering the pattern
information and reconstruction errors to improve the perfor-
mance of anomaly detection. Extensive experiments show
that the ADe-GAN outperforms the state-of-the-art methods
over several real-world datasets.

Index Terms— Anomaly detection, self-supervision, in-
terpolation, generative adversarial networks

1. INTRODUCTION

Anomaly detection aims to recognize whether a novel sam-
ple is an inlier or an outlier [1]. Improving the capability
of anomaly detection is an important problem and receives
significant attentions in many real-world application areas
such as medical diagnosis [2, 3], drug discovery [4], cyber-
security [5], and computer vision applications [6, 7].

Existing methods achieves promising performance in
anomaly detection of images, with the assumption that abnor-
mal samples bring larger reconstruction errors than normal
samples when reconstructs sample images [3, 8, 1, 9, 10, 11].
Some methods primarily leverage generative adversarial net-
works [12] or deep encoder-decoder networks [13] to com-
pute a reconstruction error which is utilized to calculate
the abnormality score for detecting the anomaly. For ex-
ample, AnoGAN [3] is first to use generative adversarial
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anomalynormal

Fig. 1. Illustration of anomaly samples close to normal ones.

network (GAN) to reconstruct the images and then to detect
the anomaly through the reconstruction errors. Introducing
Bi-GAN to train an encoder which reduces the higher com-
putational cost in AnoGAN architecture [8, 14]. GPND [1]
uses a probabilistic approach to effectively compute the re-
construction errors between normal and abnormal samples by
employing an autoencoder architecture.

Although the above approaches have their fair share of
success, most existing methods treat the anomaly detection
task as a binary classification problem that tries to classify
samples as normal and abnormal only by reconstruction er-
rors. However, ignoring different patterns of normal data and
treating all normal samples as one class may decrease detec-
tion performance in real-world applications. For example, as
shown in Fig. 1, we regard “dog” and “cat” images as normal
samples and “tiger” images as abnormal samples. It can be
observed that there are many types of patterns in normal sam-
ples such as “dog” and “cat”, and the differences between
patterns are very large. Moreover, we can find that existing
anomaly detection methods are difficult to distinguish normal
sample “cat” and abnormal sample “tiger” in the red dashed
circle based only on reconstruction errors, because the sample
distribution of “cat” is more similar1 to “tiger” rather than
“dog”. In summary, similar distributions between some ab-
normal samples and normal samples can lead to a smaller re-
construction error, which significantly limits the performance
of existing detection methods.

1Two distributions are similar when they have the similar mean value, or
even has a smaller mean square error.
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ẑn ẑc
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Fig. 2. (a) Training procedure of ADe-GAN and (b) anomaly detection by using proposed abnormality score mechanism.

To address above issues, we argue that a more effective
way to improve anomaly detection performance depends on
considering the diversity of patterns in normal samples rather
than treating the patterns in normal data as one pattern. In-
spired by GAN [15], we propose a novel Anomaly Detection
Generative Adversarial Network framework (ADe-GAN) to
improve anomaly detection via exploring the pattern informa-
tion in normal data. More concretely, we first construct a new
pattern-related self-supervised learning task in ADe-GAN to
learn the pattern information of input images via an extrac-
tor. Then, for better distinguishing the abnormal samples, we
design a novel abnormality score mechanism to identify the
different abnormal samples by jointly considering reconstruc-
tion error and pattern information. Specifically, we use recon-
struction error to identify the abnormal samples far away from
normal samples, and leverage pattern information of samples
to identify the abnormal samples close to the normal samples.

2. PROBLEM FORMULATION

We give a formal description about anomaly detection prob-
lem to help understand this problem.
Definition 2.1 (Anomaly Detection) Given a data set D
consists of N normal images, D = {x(1), x(2), . . . , x(N)},
which are sampled from normal data distributions Pn(x),
where x ∈ Rn, and a testing data set D̂ with M im-
ages, D̂ = {(x̂(1), y1), (x̂(2), y2), . . . , (x̂(M), yM )},where
yi = 0 or 1 indicates xi is sampled from normal data distri-
bution or not. The task is to model D to learn the manifold
of normal image distribution and then detect the samples
in D̂ that are not sample from Pn(x) during the test phase.
The goal of the task is to learn a anomaly score function
A : Rn → R+.

3. METHODOLOGY

In this section, we introduce the proposed ADe-GAN and ab-
normality score mechanism in detail. As depicted in Fig. 2
(a), the architecture of the proposed ADe-GAN contains two
components: 1) generative adversarial network consists of

generator G and discriminator D, which provides a mapping
from a latent space to the input space according to the random
variables zc and zn; 2) extractor E, which can learn a proper
pattern division scheme to distinguish different images and
extract feature representation from input images. Fig. 2 (b)
presents how to detect anomaly samples via abnormal score
mechanism in the model inferring stage.

3.1. Proposed ADe-GAN

3.1.1. Generative Adversarial Network (GAN)

We first train the generator G and discriminator D of GAN to
make generator fit the normal sample distribution and gener-
ate fake images by adversarial learning. After iterative train-
ing to convergence, generator can provide a mapping from
a latent space to input space and generate the normal sam-
ple distribution. That is to say, generator can learn latent
pattern information of normal samples and generate different
normal image according the different input random variable,
zc, zn, which is achieved by adversarial learning and pattern-
related self-supervised task together (introducing in the next
sub-section). We can formally describe the capability of G to
fit the normal data distribution by Pn(x) = G(zc, zn), where
Pn(x) is the normal data distribution. Formally, the adversar-
ial learning objective is defined by:

Ladv = E
zc∈ek

zn∼N(0,σ2)

log (1−D (G (zc, zn))) + E
X∼Pn(X)

log(D(X))

(1)
where zc ∈ ek denotes the pattern type of input images and
ek is the kth elementary vector in RK , zn ∼ N(0, σ2) de-
notes the feature variable of input images, zn ∈ Rd.

3.1.2. Pattern-Related Self-Supervised Task

Due to the lack of pattern types of normal data, we construct a
pattern-related self-supervised task to obtain the pattern type
of normal data by employing an extractor E. One intuitive
way to construct a self-supervised task is via the image clus-
tering, with aim to enable extractor output the feature repre-
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sentations ẑn and pattern types ẑc of images. Formally,

E(G(zc, zn)) = (ẑc, ẑn) or E(X) = (ẑc, ẑn), (2)

The extractor can be considered to be a mapping from
input space X to latent space, denoted as E : X 7→ (zc, zn).
The objective function of constructed self-supervised task is
defined as:

Lsl = E
zc∈et,zn∈N(0,σ)

H(ẑc, zc) + ||ẑn − zn||2, (3)

where H is cross-entropy loss, (ẑc, ẑn) = E(G(zc, zn)), and
ẑn and ẑc are the extracted feature variable and pattern vari-
able of generated samples, respectively.

We introduce interpolation operation [16] to helpG better
fit the normal data distribution and help E better extract the
pattern information of normal data, respectively. The defini-
tion of interpolation operation is shown below.

Definition 3.1 (Interpolation Operation) Suppose samples
{x(1), x(2), . . . , x(n)} are corresponding to {(z(1)c , z

(1)
n ), . . . ,

(z
(n)
c , z

(n)
n )} respectively, the interpolation operation be-

tween these samples are defined as zipc =
∑
λiz

(i)
c , zipn =∑

λiz
(i)
n , where

∑
λi = 1, and λi ≥ 0. The corresponding

interpolation generated sample are denoted as Xip, which
can be defined as Xip = g(zipc , z

ip
n ).

In order to help G better fit the normal data distribu-
tion, we employ interpolation operation among the same
patterns to achieve the data augmentation (generate samples
that did not appear in the training data), which improves
the generalization capability of generator. Given subset
Ds = {x(1), . . . , x(t)} that samples from the same pat-
tern in normal data and its corresponding latent variables
{(z(1)c , z

(1)
n ), . . . , (z

(t)
c , z

(t)
n )}, we can get z(1)c = z

(2)
c =

· · · = z
(t)
c . Hence, according to the Definition 3.1, we can

get:
zipc =

∑
λiz

(i)
c = (

∑
λi)z

(1)
c = z(1)c , (4)

min{z(1)n , . . . , z
(t)
n } ≤ zipn =

∑
λiz

(i)
n

≤ max{z(1)n , . . . , z
(t)
n }

,

(5)
According to Eq. (4) and (5), the interpolated vector X(ip) =
G(zipc , z

ip
n ) still lies in the same latent space. We can for-

mally describe this process by P (X(ip)) = P (G(zipc , z
ip
n )) =

P (G(zc, zn)) = P (X). Finally, the generalization capability
of G has been further improved.

TheG can fit the distribution of normal data very well, but
it can not distinguish the different patterns of normal samples.
Therefore, we design an extractorE to find and select a effec-
tive pattern division scheme to distinguish the normal samples
with different patterns and abnormal samples. We employ in-
terpolation operation among the different patterns to train E
to learn a pattern division scheme that can distinguish the nor-
mal and abnormal samples.

Since the distribution of some abnormal samples close to
normal samples,E can learn a pattern division scheme that re-
gards the sample after interpolation among different patterns
as a normal sample. We expect that interpolation among sam-
ples of different patterns can get abnormal sample so that the
pattern division scheme can distinguish the normal and abnor-
mal samples. Therefore, we penalize the E by:

Lip = E
zc /∈et,zn

∑
−1

c
logẑc, where ẑc, ẑn = E(G(zc, zn)), (6)

Besides, in order to avoid over-punishing the generator
and extractor, we introduce reconstruction loss to stabilize the
training procedure, to guarantee ||P (g(zc, zn))−P (X)|| ≤ ε
at the worst situation, which can be defined as:

Lrecon = EX∼Pn(X)||X −G(E(X))||2, (7)

3.1.3. Learning Objective

The training procedure of ADe-GAN consists of two stages
of optimization. The first stage aims to optimize G and D by
using the adversarial loss Ladv which is defined by Eq. (1).
The target of the second stage is to train G and E by jointly
minimizing the three losses defined by Eq. (3), (6) and (7):

L = αLip + βLsl + γLrecon, (8)

where α, β, andγ are tuned hyper-parameters.

3.2. Abnormality Score Mechanism

For improving anomaly detection, we design a novel abnor-
mality score mechanism by incorporating reconstruction error
and pattern information of samples extracted by E, as shown
in Fig. 2 (b). More concretely, we use the normal probability
distribution to transform reconstruction error into probability
scores to align with patterns probabilities, denoted as:

log p(x; θ) ≈ PN (||X −G(E(X))||2) (9)

For abnormal samples close to the normal data, the recon-
struction error can not distinguish them. Therefore, we use
the pattern information to help detect such kind of anoma-
lies. For normal samples, their output probabilities are close
to 1, argmax(Px∈ci(x)) = 1, because extractor can distin-
guish their pattern types. For abnormal samples, since that
they belong to none of the learned patterns, the maximum
output probability of patterns is expected to close 1

nc
, where

nc is the number of patterns. Hence the anomaly probability
of pattern information can be defined as :

log q(x; θ) ≈ − argmax(Px∈ci(x)), (10)

The total anomaly score is defined as:

A(x) = − 1

nc
∗log p(x; θ)+(1−log p(x; θ)) log q(x; θ) (11)

where nc denotes the number of patterns.
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Table 1. AUC results on MNIST
AnoGAN EGBAD Ganomaly MAE GPND IGMM ADe-GAN

0 0.610 0.755 0.722 0.619 0.943 0.855 0.971
1 0.300 0.290 0.468 0.056 0.313 0.408 0.768
2 0.535 0.670 0.819 0.662 0.944 0.935 0.967
3 0.440 0.520 0.649 0.556 0.873 0.799 0.923
4 0.430 0.450 0.677 0.544 0.908 0.818 0.888
5 0.420 0.475 0.679 0.600 0.884 0.857 0.941
6 0.475 0.570 0.684 0.831 0.868 0.834 0.928
7 0.355 0.400 0.571 0.703 0.766 0.655 0.886
8 0.400 0.545 0.708 0.798 0.882 0.842 0.947
9 0.335 0.345 0.471 0.619 0.601 0.528 0.852

average 0.430 0.500 0.645 0.599 0.798 0.756 0.907
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(a) AUC on Fashion MNIST data set
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(b) AUC on CIFAR data set

Fig. 3. AUC results of comparison models on two data sets.

4. EXPERIMENTS

4.1. Experimental Setup

Three well-known real-world data sets are used to evaluate
the ADe-GAN, including MNIST [17], Fashion MNIST [18]
and CIFAR10 [19], and all datasets include ten classes. Fol-
lowing [11, 9, 1], we treat one class of data set as anomaly
and the rest of the classes are considered as normal sam-
ples. We implement ADe-GAN in PyTorch (v0.4.0 with
Python 3.6.5) by optimizing the networks using Adam with
learning rate as 2e − 4. The parameters (α, β, γ) are set as
(1, 1, 10),(1, 10, 10) for MNIST and CIFAR10 respectively.
The parameter nc is set to 10.

4.2. Experimental Results and Analysis

We compare ADe-GAN with the state-of-the-art methods in-
cluding AnoGAN [3], EGBAD [8], Ganomaly [11], MAE [9],
IGMM [10] and GPND [1]. We use AUC scores to evaluate
the performance of anomaly detection.

Performance Evaluation. Table 1 shows AUC scores of
seven anomaly detection models on MNIST data set, which
selects one from ten categories (from “0” to “9” ) as the
anomaly class and rest are normal samples. The experimental
results show that ADe-GAN achieves the best performance
compared with other methods and obtains the best average
AUC score under all anomaly classes. For example, ADe-
GAN outperforms GPND by 10.9%, IGMM by 15.1%, MAE
by 30.8% and EGBAD by 40.7% respectively on AUC for
MNIST, due to they either ignore the pattern information in-
cluded in normal data or fail to identify the anomalies that are
close to the normal samples. For more complex data sets such
as Fashion MNIST and CIFAR, as shown in Fig. 3, it is clearly
that ADe-GAN significantly outperforms all baselines in all

anomaly classes. Specifically, ADe-GAN increases average
AUC score by 24.1% compared with AnoGAN and 9.4% by
GPND in Fashion MNIST shown in Fig. 3 (a). Besides, Fig. 3
(b) shows performance of anomaly detection of all compari-
son models upon different anomaly classes, which also illus-
trates the superiority of ADe-GAN.

Anomaly
Normal

Fig. 4. Learned patterns when abnormal class is 1.

Visualization of Pattern Information. Fig. 4 presents
image visualization results of ten patterns learned by ADe-
GAN with setting anomaly class to ”1” in MNIST. It is clearly
that ADe-GAN can learn pattern information of normal data
based on interpolation operation. For each pattern of nor-
mal samples shown in each row in Fig. 4, each reconstructed
handwritten digital image is totally different but the recon-
struction error is small, which is caused by interpolation op-
eration among the same pattern. As shown in solid red box in
Fig. 4, we can clearly recognize the anomaly class due to the
huge difference between reconstructed samples caused by the
large reconstruction error .

Table 2. AUC score of ADe-GAN under different value of nc
nc 2 4 6 8 10 12 14

AUC 0.801 0.856 0.876 0.883 0.907 0.899 0.880

Parameter Sensitivity. In this part, we investigate the
effect of nc value in MNIST data set. As shown in Table 2, it
is clearly that the value of nc relatively close to 10 facilitates
the best AUC score, because the number of classes in MNIST
data set is 10. Moreover, too low value of nc would degrade
the performance.

5. CONCLUSION

In this paper, we analyze issues why existing anomaly detec-
tion models cannot identify the samples close to normal data.
To alleviate above issues, we propose ADe-GAN to improve
the anomaly detection performance by constructing a self-
supervised task to capture latent pattern information of sam-
ples. Besides, by designing a new abnormality score mecha-
nism, ADe-GAN outperforms the state-of-the-art models.
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