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ABSTRACT

Facial Attribute Manipulation (FAM) through GAN-based
methods has been an active topic in computer graphics. Ex-
isting works show high editing fidelity on randomly generated
faces but suffer from distortion on embedded real faces. We
alleviate this issue by dividing it into two sub-problems.
First, we minimize embedding distortion by introducing a
pre-trained Salient Object Detection (SOD) network. Second,
we propose a nonlinear transformation network to minimize
editing distortion. As a result, our framework, Character
Centered Facial Attribute Manipulation (CCFAM), exhibits
more disentangled edits on real faces. Moreover, CCFAM
is computationally efficient by integrating image complexity
into our embedding process. Evaluations demonstrate that
our method performs better than the state-of-the-art in terms
of both accuracy and fidelity.

Index Terms— Facial Attribute Manipulation, GAN,
Salient Object Detection

1. INTRODUCTION

Generative Adversarial Networks (GANs) have made signif-
icant progress in image synthesis over the years. In partic-
ular, StyleGANs [1, 2, 3] are capable of synthesizing high-
resolution photo-realistic images including human faces. Fa-
cial Attribute Manipulation (FAM) aims to edit specific facial
attributes while keeping others unchanged. However, it re-
mains challenging when applying GANs to FAM. Distortions
are found in manipulated images, especially in those com-
plex ones. There are two reasons for this: (i) images must
be embedded into the latent space in advance. The embed-
ding methods and the complexity of the images will affect the
embedding quality; and (ii) attributes on human faces are en-
tangled with each other in the latent space. Manipulating one
attribute may unintentionally affect the others. Furthermore,
we demonstrate that entanglements between facial and non-
facial attributes will also cause distortion. Thus, we present
a novel framework called Character Centered Facial Attribute
Manipulation (CCFAM) to minimize the distortion during the
embedding and editing process of FAM.

Existing works like [4, 5] are capable of embedding im-
ages into the latent space of StyleGANs. But when the com-

Fig. 1. Examples of embedding quality varying with image
complexity. Upper: Original images; Lower: Embedded re-
sults. The background distortions are marked as red boxes.
The blurry edges between the foreground and background are
marked as green boxes.

plexity of images arises, the embedding quality declines dra-
matically. As shown in Fig.1, we keep the main characters un-
changed and replace them with different backgrounds. Using
former embedding techniques, the embedding quality varies
with the complexity of images. To further illustrate this issue,
we introduce image entropy (H) to evaluate the complexity of
an image. As image entropy goes up, image complexity goes
up as well. Using [4] with starting latent code ω and fixed em-
bedding parameters. We randomly embed 500 images from
the FFHQ dataset. Then we calculate the PSNR between the
embedded images and original images. Fig.2 shows the cor-
relation between PSNR and H. As we can see, to stabilize the
embedding process, it is necessary to control the complexity
of the images. We introduce Salient Object Detection (SOD)
to the embedding network, which significantly constrains the
image complexity and alleviates the embedding distortion.

By tweaking the latent codes, existing works like [6, 7, 8]
can control the editing process with semantic specifications.
But it remains challenging to fully disentangle the attributes.
To tune the editing direction and achieve disentanglement, [9]
introduced pre-trained segmentation networks and localiza-
tion scores. However, they still assumed there are linear paths
among the attributes in the latent space. We further disentan-
gle the latent space with non-linear transformation networks.
Benefiting from the localization scores, the proposed CCFAM
shows more editing fidelity.IC
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Fig. 2. The correlation between embedding quality and image
complexity. As the image complexity increases, the embed-
ding quality decreases. Blue: Image2StyleGAN [4]; Orange:
Image2StyleGAN + SOD.

We also propose a new dataset that contains 2500 face
images of 500 celebrities. The backgrounds of these images
vary from solid colours to in-the-wild scenarios. Based on
SOD and our new dataset, we not only disentangle the facial
and non-facial attributes for the first time, but also expand
FAM to more application scenarios, such as portrait drawing
manipulation and portfolio portrait generation.

2. RELATED WORKS

2.1. FAM and GAN Inversion

Many former FAM approaches are based on Conditional
GANs (CGANs) [10]. By incorporating additional infor-
mation as input, CGANs can reduce the generation uncer-
tainty, making the output more in line with our expectations.
CGANs can translate an image from one domain to another.
In FAM, these domains could be gender, age, facial expres-
sions, etc. One representative approach CycleGAN [11] can
translate images across two domains. Furthermore, StarGAN
[12] realized translations across multiple domains.

Since StyleGANs [1, 2, 3] provided us powerful genera-
tors with scale-specific control of high-level attributes. Many
FAM approaches were proposed to explore the latent space
of StyleGANs. To reconstruct an image through the gener-
ators, one typical way [13] is to train an encoder network
to map a given image into a latent code. Some approaches
[2, 4] also realized embedding by directly optimizing the la-
tent code. These optimization models usually achieve low
distortion, but their embedding results are less editable be-
cause of the entanglements.

There are linear transformations [6, 7] and non-linear
transformations [14, 8, 15] to map the latent code from W
toW+. Normally, non-linear transformations perform better

than linear ones. One representative non-linear approach is
StyleFlow [8], which requires a commercial Face API for
classifying the attributes. By contrast, GuidedStyle [15] in-
troduced a pre-trained classification model, which still has
state-of-the-art performance.

2.2. Salient Object Detection

Salient Object Detection (SOD) aims to detect and segment
the visually distinctive object in an image, which, in our CC-
FAM, is the main character. The performance of SOD has
improved significantly over the years due to the development
of Convolutional Neural Networks (CNNs). Many SOD ap-
proaches employ backbones like AlexNet [16], VGG [17],
and ResNet [18] for feature extraction, which are effective but
computationally expensive. We, instead, adopt U2-Net [19],
a simpler yet powerful state-of-the-art SOD approach to con-
strain the complexity of our embedding images. Unlike image
matting, which requires extra trimaps as input, SOD requires
only one image at a time, which is ideal for our embedding
process.

The features of SOD can provide us with some interesting
applications such as portrait drawing generation. We will also
make use of these features to broaden the application scenar-
ios of FAM in Sec.4.

3. METHOD

Mapping images into latent codes is a lossy compression pro-
cess. Therefore, the encoder-decoder structure of GAN in-
version will hit its bottleneck when the complexity of images
arises. This will lead to embedding distortion and less ed-
itability. We observed that images with a deeper depth of field
usually perform better embedding fidelity. The depth of field
highlights the salient objects and decreases the image com-
plexity. Thus, we will improve the GAN Inversion editability
from a new perspective by actively constraining the complex-
ity of images with SOD.

Fig. 3 shows the overview of our method. The original
image I can be formulated as:

I = λC + (1− λ)B, (1)

where C stands for the main character, B stands for the back-
ground and λ controls the transparency of pixels. Our embed-
ding target can be formulated as:

I ′ = λC + (1− λ)B(B), (2)

where B stands for blur algorithms. Here we choose Gaus-
sian blur with a kernel size of 99 × 99. By applying SOD
and Gaussian blur, the average image entropy of our test sam-
ples drops from 9.27 to 7.03, which significantly relieves the
embedding pressure.

Our method is applicable to any embedding approach.
Here we choose latent code optimization as an illustration.
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Fig. 3. The overview of our framework. The blue box indicates the pre-trained SOD network. The green box shows the
embedding process using the latent code optimization strategy. The yellow box indicates the RA-MLP block, which performs
the non-linear latent transformation. The semantic segmentation model is indicated by orange boxes. Here we extend the
segmentation model with an extra dilation operation to cover more area around the eyes.

Starting from the mean latent code ω, the iteration of ω and
embedding loss L can be formulated as:

L ← L(G(ω), I ′), (3)

ω ← ω − ηF(∇ωL). (4)

G(·) is the generator network. The embedded latent code ω
and the embedded image G(ω) are optimized via F .

We can perform FAM by moving the latent code ω along
a proper direction in the latent space. The Localization Score
from [9] is an effective method to tune an existing direction.
To take this method one step further, we combine it with a
Residual Attention MLP block (RA-MLP) [15]. Unlike the
original Localization Score, which was only used for opti-
mizing linear directions, we realize non-linear optimization
to further reduce the editing distortion.

Given a pre-trained RA-MLP block, the extended latent
code can be formulated as:

ω+ = H(ω) = αF (ω) + (1− α)ω, (5)

where F (·) stands for the MLP layer to be tuned and α con-
trols the magnitude of changes.

Using ri(ω) to represent the i-th layer activation of G(ω)
and si(x,x

+) is the average of segmentation masks down-
sampled to the resolution of the i-th layer. Similar to [9], our
objective function can be formulated as:

LS(H(ω)) =

∑
i si(x,x

+)⊙ |ri(ω)− ri(H (ω))|2∑
i |ri(ω)− ri(H(ω))|2

. (6)

Image2StyleGAN pSp IDInvert e4e

Original 22.66 22.81 22.89 22.92
+ SOD 24.20 24.27 24.38 24.35

Table 1. The average value of PSNR between the embedded
images and original images (higher is better). The embedding
images are randomly selected from the FFHQ dataset.

Instead of setting a latent direction as the optimization
target, our optimization target is a non-linear transformation
function that can move the latent code more precisely.

4. EXPERIMENTS

For embedding parts, we apply SOD to multiple embedding
approaches to verify the effectiveness of our method. For
editing parts, we take [20] as the segmentation model and
train our model on randomly generated face images using
SGD with momentum weight of 0.9, learning rate of 0.001,
and batch size of 10. We use the FFHQ dataset and our
proposed dataset for evaluation. We compare our CCFAM
with other competing methods using evaluation metrics of
Fréchet Inception Distance (FID) and Sliced Wasserstein Dis-
tance (SWD) for measuring the similarity between the edited
faces and the originals, Cosine Similarity (CS) and Euclidean
Distance (ED) for quantifying the identity preservation.
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Metric InterFaceGAN StyleFlow Ours

FID ↓ 62.13 52.97 50.32
85.07 82.78 80.37

SWD ↓ 361.82 300.14 286.58
425.79 410.02 397.30

CS ↑ 0.87 0.84 0.91
0.61 0.63 0.78

ED ↓ 0.83 0.76 0.59
0.85 0.72 0.57

Table 2. Quantitative comparison with latent space manipu-
lation models measured by different metrics. Here we choose
two attributes as illustrations. First row: Manipulation on the
smile. Second row: Manipulation on the eyeglasses.

Background Colour CS ↑ ED ↓
White 0.97 0.38
Red 0.96 0.42
Blue 0.94 0.43

Table 3. The influence of background colour on FAM. We
choose three colours that are commonly used in portfolio por-
traits: white (r: 255, g: 255, b: 255), red (r: 210, g: 10, b:
50), and blue (r: 30, g: 170, b: 230).

4.1. Embedding with SOD

SOD enforces the encoders to focus on the salient objects
by reducing unimportant information in an image. We cal-
culate the PSNR improvements with and without SOD on
Image2StyleGAN [4], IDInvert [5], pSp [13], and e4e [14].
As shown in Table 1, when the complexity of embedding im-
ages is constrained, all the methods show higher embedding
fidelity. We also use the image entropy to dynamically control
the embedding process, rather than the commonly used early
stopping strategy, which saves 7% of the embedding iterations
on average.

4.2. Semantic Editing

Table 2 shows the quantitative comparison with InterFace-
GAN [7] and StyleFlow [8]. As we can see, our CCFAM out-
performs other competitors with less editing distortion. Based
on the proposed dataset, we explore the influence of back-
ground colour on FAM. As shown in Table 3, among the three
colours we choose, embedded images with solid white back-
grounds have better identity preservation capability.

4.3. More Application Scenarios

Benefiting from the features of SOD, we can apply FAM to
more interesting application scenarios. As shown in Fig. 4,

Smile Face Shape Pose Eyes Open/Closed

Fig. 4. Visualization of portrait drawing manipulation.

Original + Red + Smile

Original + White - Smile

+ Blue

+ Red

Fig. 5. Visualization of portfolio portrait generation.

our CCFAM can be transferred to portrait drawing manipula-
tion. With our new proposed dataset, we also realize portfolio
portrait generation (Fig. 5). With fully disentangled fore-
ground and background, we can manipulate the background
colour directly in the latent space. Unlike image matting,
which can only change the background colour, we can also
manipulate other attributes at the same time.

5. CONCLUSION

In this work, we present CCFAM to minimize the distortions
of FAM in two aspects. First, we introduce a pre-trained SOD
network to minimize embedding distortion. Second, we com-
bine RA-MLP with Localization Score to minimize editing
distortion. We also proposed a new dataset to further broaden
the application scenarios of FAM. Experiments show the su-
perior embedding and editing fidelity of our method over pre-
vious works.
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