
Automatic Front-end Code Generation from image
Via Multi-Head Attention

Zhihang Zhang1, Ye Ding1*, Chenlin Huang2

1School of Cyberspace Security, Dongguan University of Technology, Dongguan, China;
2Academy of Computer Science, National University of Defense Technology, Changsha, China

*Corresponding author’s email: dingye@dgut.edu.cn

Abstract. Code generation from Graphical User Interface
(GUI) screenshots is a challenging task in machine learning.
Existing methods (e.g., Pix2code) can handle simple datasets well
but struggle with complex datasets requiring hundreds of code
tokens. This paper proposes a novel method for generating front-
end code based on multi-head attention. Our method uses a special
technique called multi-head attention to analyze a GUI
screenshot’s feature vector, generate the code tokens, and link the
analysis and generation processes. This architecture gives our
method a significant advantage over similar models in terms of
effectiveness. We conduct experiments on two types of datasets:
Pix2code datasets and our own datasets. The experimental results
demonstrate that our method achieves the best performance
among existing methods.

Keywords-Neural networks; User interface programming;
Graphical user interfaces; Scene understanding; Object recognition

Ⅰ. Introduction

Developing front-end web pages is a time-consuming
process that often occupies a significant portion of a developer's
time. In recent years, employing machine learning technology
to automatically generate front-end code from Graphical User
Interface (GUI) screenshots has become an increasingly
popular research topic.

However, the primary challenge in this task is the
transformation from GUI screenshots to code. The pioneering
work of Pix2code [2] introduced a deep learning approach
based on Convolutional and Recurrent Neural Networks (CNNs
and RNNs) to address this challenge. Although subsequent
studies [16, 3] have improved upon this approach by
incorporating attention mechanisms, the design of such
mechanisms can compromise the model's portability.

We propose a new model based on the multi-head attention
(MHA) [14] technique to address these limitations. Our
approach enables the model to attend to information from
different representation subspaces at various positions without
needing specially designed attention mechanisms. Our front-
end code generation model is trained on novel GUI screenshot-
code datasets, which contain twice as much data as Pix2code
and have an average code length of that is 1.5 times longer.

In addition to our new model, we introduce a novel
evaluation methodology that more effectively measures the
model's ability to process complex data. Our results
demonstrate that our approach outperforms existing methods,
indicating the potential of multi-head attention techniques for
enhancing front-end code generation from GUI screenshots.

Ⅱ. Related Work

Front-end code generation is a research field that aims to
convert graphical user interfaces (GUIs) into code
automatically. This field has two primary research directions:
generating code from GUI screenshots and generating code
from GUI design drafts.

For the first direction, several works have employed deep
learning models with encoder-decoder structures composed of
CNN and RNN to generate code from GUI screenshots.
Pix2code [2] is an experimental project that pioneered this
approach using CNN as the encoder and LSTM as the decoder.
[13] improved the LSTM-based decoder by introducing Bi-
LSTM to enhance model performance. [16] utilized the
attention mechanism to optimize the semantic alignment
between the encoder and decoder. [3] introduced GRU to refine
the method. [15] proposed an evaluation method called
MBLUE, which can more reasonably evaluate the code
generation results. For the second direction, more detailed layer
and layout information can be obtained from the GUI design
drafts, but effectively handling and understanding this
information is a crucial challenge. [10] proposes a method to
encode layout information in the GUI design draft using
Transformer. [11] proposed a method to model multi-modal
information on the front page, such as images, structures, and
text. [12] proposes a novel position encoding method for the
position information of elements in the GUI design draft. [5]
focuses on accurately identifying icons in GUI design drafts. [9]
concentrates on solving the potential problem of fragmented
layers in actual GUI design drafts.

Ⅲ. Methods

Figure 1 presents an overview of our method. On the left
side of the figure is the encoder section, which converts image
𝐼 into a 1D vector 𝐼ᇱ. On the right is the decoder section, which
utilizes 𝐼ᇱ and the current token sequence 𝑋௧ିଵ to predict the
next token 𝑥௧ . The architecture can be expressed
mathematically as follows:

𝑋௧ିଵ ൌ ሺ𝑥, . . . , 𝑥௧ିଵሻ, 𝑥 ∈ ℝ

𝑥௧ ൌ DecoderሺEncoderሺ𝐼ሻ, 𝑋௧ିଵሻ

where 𝑥 ൌ 𝑇𝑜𝑘𝑒𝑛௦௧௧ and 𝑥 ൌ 𝑇𝑜𝑘𝑒𝑛ௗ denote the
special token <START> and <END>. These tokens are used to
prefix and suffix the code files, respectively. 𝐶 is the total
number of tokens in the program. 𝐾 represents the size of the
token vocabulary.

In the following, we will introduce Decoderሺ∙ሻ and
Encoderሺ∙ሻ.

2023 4th International Conference on Computer Engineering and Application (ICCEA)

979-8-3503-4754-8/23/$31.00 ©2023 IEEE 869

20
23

 4
th

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 C

om
pu

te
r

En
gi

ne
er

in
g

an
d

A
pp

lic
at

io
n

(IC
CE

A
) |

 9
79

-8
-3

50
3-

47
54

-8
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 |

 D
O

I:
10

.1
10

9/
IC

CE
A

58
43

3.
20

23
.1

01
35

46
2

Figure 1. The overview of our method

A. Vision Encoder

The vision encoder comprises three parts: ResNet block [6],
fully connected block, and batch normalization block [7]. The
encoder takes one input representing a resized 512×512 image.
We extract feature representations from input images using an
encoder. The representations of 𝐼′ are part of the input of the
decoders. This extraction produces a D-dimensional
representation that we refer to image note vectors.

𝐼′ ൌ ሺ𝑎ଵ, . . . , 𝑎ሻ, 𝑎 ∈ ℝ

Image note vectors are employed later in the multi-head
attention mechanism that selectively focuses on specific
elements of image note vectors at each time step.

B. Multi-Head Attention-Based Decoder

The multi-head attention-based decoder is similar to the
decoder of Transformer [4]. Unlike [4], which uses the output
of multi-head attention as input of the decoder, our method
employs results of ResNet-152. We chose convolutional neural
networks as encoders because they are widely used for
computer vision problems. One of the two multi-head attention
blocks connects the encoder to the decoder, which we call
“encoder-decoder attention” layers, and we call the other one
“decoder attention” layer.

In the “encoder-decoder attention” layers, the queries 𝑄ଶ
come from the previous decoder layers, and the keys 𝐼 and
values 𝐼 originate from the output of the encoder. Attention
layers enable the decoder to access full image note vectors at
each time step. The following equations govern the working
flow of the “encoder-decoder attention” layers:

MultiHeadሺ𝑄ଶ, 𝐼, 𝐼ሻ ൌ Concatሺℎ𝑒𝑎𝑑ଵ, … , ℎ𝑒𝑎𝑑ሻ𝑊ைమ

𝐰𝐡𝐞𝐫𝐞 ℎ𝑒𝑎𝑑 ൌ Attentionሺ𝑄ଶ𝑊
ொమ, 𝐼𝑊

ூ಼, 𝐼𝑊
ூೇሻ

where the 𝑊
ொమ ∈ ℝௗൈௗೖ , 𝑊

ூ಼ ∈ ℝௗൈௗೖ , 𝑊
ூೇ ∈

ℝௗൈௗೡ and 𝑊ைమ ∈ ℝௗೡൈௗ. In this work, we set ℎ ൌ
8 attention head, 𝑑ௗ ൌ 512 , and 𝑑 ൌ 𝑑௩ ൌ 64 . The
Attentionሺ∙ሻ is “scaled dot-product attention” [14]. Compared
with the most used additive attention [7], dot-product attention
is faster and more space-efficient in practice.

In the “decoder attention” layers, the queries 𝑄ଵ, keys 𝑇,
and values 𝑇 originate from the previous decoder layer. The
input is positional encoding and embeddings. We inject
positional information into the input embeddings allowing the
model use the order of the output token from embedding layers.
Mathematically, the layers can be represented as:

MultiHeadሺ𝑄ଵ, 𝑇, 𝑇ሻ ൌ Concatሺℎ𝑒𝑎𝑑ଵ, … , ℎ𝑒𝑎𝑑ሻ𝑊ைభ

𝐰𝐡𝐞𝐫𝐞 ℎ𝑒𝑎𝑑 ൌ Attentionሺ𝑄ଵ𝑊
ொభ, 𝑇𝑊

಼், 𝑇𝑊
்ೇሻ

where the 𝑊
ொభ ∈ ℝௗൈௗೖ , 𝑊

಼் ∈ ℝௗൈௗೖ , 𝑊
்ೇ ∈

ℝௗൈௗೡ, and 𝑊ைభ ∈ ℝௗೡൈௗ.

The working flow of the decoder block can be summarized
as follows. The process has three main stages, beginning with
the “decoder attention” layers handling embeddings. Then the
“encoder-decoder attention” layers connect the encoder and
decoder. Finally, the position-wise fully connected feed-
forward network processes the previous output. A residual
connection [6] and a layer normalization [1] process the output
of each stage. Similar Transformer, we use a stack of 𝑁 ൌ 6
identical layers.

C. Training

We train the model in an end-to-end manner. The dataset
contains GUI screenshots and Domain Specific Languages
(DSL), which reduce search space and token size. Unlike [2,
13], which employed a fixed-size sliding window to obtain
slices of code, our method can capture whole code tokens.

870

Unlike [16, 3], which use attention mechanism in RNN, our
method only utilizes attention mechanism in the decoder.

We train the model using minimizing penalized cross-
entropy loss to train the model. Learning rate is set to 0.0001.

D. Structural Cross Entropy

Although most works [2, 13, 16, 3] use error rate as an
evaluation indicator, it does not reflect the front-end code’s
structural characteristics. MBLUE [15] proposes a new model
evaluation method, but in practice, it does not fully reflect these
characteristics either. Therefore, we designed a structure cross
entropy (SCE) to evaluate different models. The equation can
be represented as the following:

SCE ൌ
∑ H൫𝑦ො, 𝑦൯ H ቀ𝑦୮୰ୣ

, 𝑦
୮୰ୣቁ H ቀ𝑦୮୭ୱ୲

, 𝑦
୮୭ୱ୲ቁ

ୀ

3L

where 𝐿 is the number of sentences in the test dataset, and Hሺ∙ሻ
represents a cross-entropy function. 𝑦 denotes the original DSL
code sequence. 𝑦୮୰ୣ represents the DSL code sequence
processed by preorder traversal. 𝑦୮୭ୱ୲ indicates the DSL
code sequence processed by postorder traversal. 𝑦 is the
ground truth for the j-th image. 𝑦ఫෝ is the prediction for the j-
th image. Fig. 2 displays different traversal methods in each
column.

We utilize the results of three traversal methods to evaluate
tree structure because they can uniquely determine a tree [4].

Figure 2 displays an example of DSL code traversal
sequences using different traversal methods, with the input
being the ground truth and generated trees, respectively.

Figure 2. The diagram of structure evaluation

Ⅳ. Experiments and results

A. Setup

Data: We implement the proposed front-end code
generation method on two datasets: Pix2code and our own
dataset.

The first one is the Pix2code dataset provided by [2], which
contains 1742 Web GUI-code pairs.

The second one is our dataset. We call the dataset
Pix2code++. It consists of 3483 Web GUI-code pairs. The
reason for establishing Pix2code++ because the examples in the
Pix2code dataset are too simple for existing methods. Half of
the data in the Pix2code++ dataset consists of Pix2code, and we
create the other half. The code length of half of the dataset we
created is, on average, twice as long as Pix2code. As a result,

the average length of Pix2code++ is 1.5 times longer than
Pix2code.

Implementation Details: First, we normalize the size of the
input GUI screenshot to 224x224. For the encoder part, we use
a pre-trained ResNet-152-based encoder. We employ an
embedding layer for the input DSL code to learn the feature
representation. We utilize Adam [8] as an optimizer in various
training processes.

Baseline methods: We present the results of two baseline
methods to verify the effectiveness of decoders based on multi-
head attention. These methods utilize LSTM and GRU,
respectively. We employ these two models as decoders because
these two models are widely used in code generation from GUI
screenshot tasks. For example, LSTM [2, 16], GRU [3].
Therefore, we set the decoder of baseline-1 as LSTM and

871

baseline-2 as GRU. Both baseline methods are identical except
for the decoder.

B. Evaluation Results

Table 1. compares our method with Baseline-1 and
Baseline-2 under the Pix2code and Pix2code++ datasets for test
cross entropy. When comparing our method with other methods,
our method outperforms the baselines for both evaluation
methods, and this result is more evident for the Pix2code++
dataset. The above results demonstrate that our proposed
method is more advantageous in decoding complex GUI
screenshots features. The results using structure cross entropy
are shown in Table 2. Compared with cross-entropy, the
difference between the results obtained by structural cross-
entropy is more pronounced.

Table 1. Comparison of the cross entropy of our method with
baseline-1, baseline-2 on two test datasets.

Dataset
Cross entropy

Baseline-1 Baseline-2 Ours

Pix2code 0.0580 0.1062 0.0441

Pix2code++ 0.0795 0.1176 0.0376

Table 2. Results for structural cross-entropy

Dataset
Structure cross entropy

Baseline-1 Baseline-2 Ours

Pix2code 0.6014 0.6738 0.4786

Pix2code++ 1.8335 1.2459 1.0383

Ⅴ. Conclusion and prospect

This paper addresses the problem of generating code from
GUI screenshots. We design a decoder method based on the
multi-head attention mechanism. Our method achieves the best
performance on both public and self-collected datasets. Our
experiments demonstrate that the multi-headed attention
mechanism in the decoder is highly effective. Moreover, we
propose a novel evaluation metric that can comprehensively
assess the structure of the generated code. We plan to employ a
larger-scale model to handle real-world datasets for future work.

Acknowledgments

This work is supported by National Natural Science
Foundation of China (U19A2067, 61976051).

References
[1] BA, J.L., KIROS, J.R., and HINTON, G.E. (2016) Layer normalization.

arXiv preprint arXiv:1607.06450.

[2] BELTRAMELLI, T. (2018) pix2code: Generating code from a graphical
user interface screenshot. In: Proceedings of the ACM SIGCHI
Symposium on Engineering Interactive Computing Systems, pp. 1-6.

[3] CHEN, W.-Y., PODSTRELENY, P., CHENG, W.-H., CHEN, Y.-Y., and
HUA, K.-L. (2022) Code generation from a graphical user interface via
attention-based encoder–decoder model. Multimedia Systems, 28, pp.
121-130.

[4] CORMEN, T.H., LEISERSON, C.E., RIVEST, R.L., and STEIN, C.
(2022) Introduction to algorithms. MIT press.

[5] FENG, S., JIANG, M., ZHOU, T., ZHEN, Y., and CHEN, C. (2022) Auto-
Icon+: An Automated End-to-End Code Generation Tool for Icon
Designs in UI Development. ACM Trans. Interact. Intell. Syst.

[6] HE, K., ZHANG, X., REN, S., and SUN, J. (2015) Deep Residual
Learning for Image Recognition. arXiv preprint arXiv:1512.03385.

[7] IOFFE, S., and SZEGEDY, C. (2015) Batch normalization: Accelerating
deep network training by reducing internal covariate shift. In:
International conference on machine learning, pmlr, pp. 448-456.

[8] KINGMA, D.P., and BA, J. (2014) Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980.

[9] LI, J., ZHOU, T., CHEN, Y., CHANG, Y., ZHEN, Y., SUN, L., and
CHEN, L. (2022) ULDGNN: A Fragmented UI Layer Detector Based on
Graph Neural Networks. arXiv preprint arXiv:2208.06658.

[10] LI, Y., AMELOT, J., ZHOU, X., BENGIO, S., and SI, S. (2020) Auto
Completion of User Interface Layout Design Using Transformer-Based
Tree Decoders. arXiv preprint arXiv:2001.05308.

[11] LI, Y., LI, G., ZHOU, X., DEHGHANI, M., and GRITSENKO, A. (2021)
VUT: Versatile UI Transformer for Multi-Modal Multi-Task User
Interface Modeling. arXiv preprint arXiv:2112.05692.

[12] LI, Y., SI, S., LI, G., HSIEH, C.-J., and BENGIO, S. (2021) Learnable
fourier features for multi-dimensional spatial positional encoding. In:
Advances in Neural Information Processing Systems, 34, pp. 15816-
15829.

[13] LIU, Y., HU, Q., and SHU, K. (2018) Improving pix2code based Bi-
directional LSTM. In: 2018 IEEE International Conference on
Automation, Electronics and Electrical Engineering (AUTEEE), IEEE, pp.
220-223.

[14] VASWANI, A., SHAZEER, N., PARMAR, N., USZKOREIT, J., JONES,
L., GOMEZ, A. N., KAISER, Ł., & POLOSUKHIN, I. (2017). Attention
is all you need. In Advances in neural information processing systems, 30
(pp. 5998-6008).

[15] YAO, X., YAP, M. H., & ZHANG, Y. (2022). Towards a Deep Learning
Approach for Automatic GUI Layout Generation. Springer Nature
Singapore.

[16] ZHU, Z., XUE, Z., & YUAN, Z. (2019). Automatic Graphics Program
Generation Using Attention-Based Hierarchical Decoder. Springer
International Publishing.

872

