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Abstract. Code generation from Graphical User Interface 
(GUI) screenshots is a challenging task in machine learning. 
Existing methods (e.g., Pix2code) can handle simple datasets well 
but struggle with complex datasets requiring hundreds of code 
tokens. This paper proposes a novel method for generating front-
end code based on multi-head attention. Our method uses a special 
technique called multi-head attention to analyze a GUI 
screenshot’s feature vector, generate the code tokens, and link the 
analysis and generation processes. This architecture gives our 
method a significant advantage over similar models in terms of 
effectiveness. We conduct experiments on two types of datasets: 
Pix2code datasets and our own datasets. The experimental results 
demonstrate that our method achieves the best performance 
among existing methods. 
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Ⅰ. Introduction 

Developing front-end web pages is a time-consuming 
process that often occupies a significant portion of a developer's 
time. In recent years, employing machine learning technology 
to automatically generate front-end code from Graphical User 
Interface (GUI) screenshots has become an increasingly 
popular research topic.  

However, the primary challenge in this task is the 
transformation from GUI screenshots to code. The pioneering 
work of Pix2code [2] introduced a deep learning approach 
based on Convolutional and Recurrent Neural Networks (CNNs 
and RNNs) to address this challenge. Although subsequent 
studies [16, 3] have improved upon this approach by 
incorporating attention mechanisms, the design of such 
mechanisms can compromise the model's portability.  

We propose a new model based on the multi-head attention 
(MHA) [14] technique to address these limitations. Our 
approach enables the model to attend to information from 
different representation subspaces at various positions without 
needing specially designed attention mechanisms. Our front-
end code generation model is trained on novel GUI screenshot-
code datasets, which contain twice as much data as Pix2code 
and have an average code length of that is 1.5 times longer. 

In addition to our new model, we introduce a novel 
evaluation methodology that more effectively measures the 
model's ability to process complex data. Our results 
demonstrate that our approach outperforms existing methods, 
indicating the potential of multi-head attention techniques for 
enhancing front-end code generation from GUI screenshots. 

Ⅱ. Related Work 

Front-end code generation is a research field that aims to 
convert graphical user interfaces (GUIs) into code 
automatically. This field has two primary research directions: 
generating code from GUI screenshots and generating code 
from GUI design drafts.  

For the first direction, several works have employed deep 
learning models with encoder-decoder structures composed of 
CNN and RNN to generate code from GUI screenshots. 
Pix2code [2] is an experimental project that pioneered this 
approach using CNN as the encoder and LSTM as the decoder. 
[13] improved the LSTM-based decoder by introducing Bi-
LSTM to enhance model performance. [16] utilized the
attention mechanism to optimize the semantic alignment
between the encoder and decoder. [3] introduced GRU to refine
the method. [15] proposed an evaluation method called
MBLUE, which can more reasonably evaluate the code
generation results. For the second direction, more detailed layer
and layout information can be obtained from the GUI design
drafts, but effectively handling and understanding this
information is a crucial challenge. [10] proposes a method to
encode layout information in the GUI design draft using
Transformer. [11] proposed a method to model multi-modal
information on the front page, such as images, structures, and
text. [12] proposes a novel position encoding method for the
position information of elements in the GUI design draft. [5]
focuses on accurately identifying icons in GUI design drafts. [9]
concentrates on solving the potential problem of fragmented
layers in actual GUI design drafts.

Ⅲ. Methods 

Figure 1 presents an overview of our method. On the left 
side of the figure is the encoder section, which converts image 
𝐼 into a 1D vector 𝐼ᇱ. On the right is the decoder section, which 
utilizes 𝐼ᇱ  and the current token sequence 𝑋௧ିଵ  to predict the 
next token 𝑥௧ . The architecture can be expressed 
mathematically as follows:  

𝑋௧ିଵ ൌ ሺ𝑥, . . . , 𝑥௧ିଵሻ, 𝑥 ∈ ℝ 

𝑥௧ ൌ DecoderሺEncoderሺ𝐼ሻ, 𝑋௧ିଵሻ 

where 𝑥 ൌ 𝑇𝑜𝑘𝑒𝑛௦௧௧  and 𝑥 ൌ 𝑇𝑜𝑘𝑒𝑛ௗ  denote the 
special token <START> and <END>. These tokens are used to 
prefix and suffix the code files, respectively. 𝐶  is the total 
number of tokens in the program. 𝐾 represents the size of the 
token vocabulary.  

In the following, we will introduce Decoderሺ∙ሻ  and 
Encoderሺ∙ሻ. 
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Figure 1. The overview of our method 

A. Vision Encoder

The vision encoder comprises three parts: ResNet block [6],
fully connected block, and batch normalization block [7]. The 
encoder takes one input representing a resized 512×512 image. 
We extract feature representations from input images using an 
encoder. The representations of 𝐼′ are part of the input of the 
decoders. This extraction produces a D-dimensional 
representation that we refer to image note vectors. 

𝐼′ ൌ ሺ𝑎ଵ, . . . , 𝑎ሻ, 𝑎 ∈ ℝ 

Image note vectors are employed later in the multi-head 
attention mechanism that selectively focuses on specific 
elements of image note vectors at each time step. 

B. Multi-Head Attention-Based Decoder

The multi-head attention-based decoder is similar to the
decoder of Transformer [4]. Unlike [4], which uses the output 
of multi-head attention as input of the decoder, our method 
employs results of ResNet-152. We chose convolutional neural 
networks as encoders because they are widely used for 
computer vision problems. One of the two multi-head attention 
blocks connects the encoder to the decoder, which we call 
“encoder-decoder attention” layers, and we call the other one 
“decoder attention” layer. 

In the “encoder-decoder attention” layers, the queries 𝑄ଶ 
come from the previous decoder layers, and the keys 𝐼  and 
values 𝐼  originate from the output of the encoder. Attention 
layers enable the decoder to access full image note vectors at 
each time step. The following equations govern the working 
flow of the “encoder-decoder attention” layers: 

MultiHeadሺ𝑄ଶ, 𝐼, 𝐼ሻ ൌ Concatሺℎ𝑒𝑎𝑑ଵ, … , ℎ𝑒𝑎𝑑ሻ𝑊ைమ 

𝐰𝐡𝐞𝐫𝐞 ℎ𝑒𝑎𝑑 ൌ Attentionሺ𝑄ଶ𝑊
ொమ, 𝐼𝑊

ூ಼, 𝐼𝑊
ூೇሻ

where the 𝑊
ொమ ∈ ℝௗൈௗೖ , 𝑊

ூ಼ ∈ ℝௗൈௗೖ , 𝑊
ூೇ ∈

ℝௗൈௗೡ and 𝑊ைమ ∈ ℝௗೡൈௗ. In this work, we set ℎ ൌ
8  attention head, 𝑑ௗ ൌ 512 , and 𝑑 ൌ 𝑑௩ ൌ 64 . The 
Attentionሺ∙ሻ is “scaled dot-product attention” [14]. Compared 
with the most used additive attention [7], dot-product attention 
is faster and more space-efficient in practice. 

In the “decoder attention” layers, the queries 𝑄ଵ, keys 𝑇, 
and values 𝑇 originate from the previous decoder layer. The 
input is positional encoding and embeddings. We inject 
positional information into the input embeddings allowing the 
model use the order of the output token from embedding layers. 
Mathematically, the layers can be represented as: 

MultiHeadሺ𝑄ଵ, 𝑇, 𝑇ሻ ൌ Concatሺℎ𝑒𝑎𝑑ଵ, … , ℎ𝑒𝑎𝑑ሻ𝑊ைభ 

𝐰𝐡𝐞𝐫𝐞 ℎ𝑒𝑎𝑑 ൌ Attentionሺ𝑄ଵ𝑊
ொభ, 𝑇𝑊

಼், 𝑇𝑊
்ೇሻ

where the 𝑊
ொభ ∈ ℝௗൈௗೖ , 𝑊

಼் ∈ ℝௗൈௗೖ , 𝑊
்ೇ ∈

ℝௗൈௗೡ, and 𝑊ைభ ∈ ℝௗೡൈௗ. 

The working flow of the decoder block can be summarized 
as follows. The process has three main stages, beginning with 
the “decoder attention” layers handling embeddings. Then the 
“encoder-decoder attention” layers connect the encoder and 
decoder. Finally, the position-wise fully connected feed-
forward network processes the previous output. A residual 
connection [6] and a layer normalization [1] process the output 
of each stage. Similar Transformer, we use a stack of 𝑁 ൌ 6 
identical layers. 

C. Training

We train the model in an end-to-end manner. The dataset
contains GUI screenshots and Domain Specific Languages 
(DSL), which reduce search space and token size. Unlike [2, 
13], which employed a fixed-size sliding window to obtain 
slices of code, our method can capture whole code tokens. 
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Unlike [16, 3], which use attention mechanism in RNN, our 
method only utilizes attention mechanism in the decoder. 

We train the model using minimizing penalized cross-
entropy loss to train the model. Learning rate is set to 0.0001. 

D. Structural Cross Entropy

Although most works [2, 13, 16, 3] use error rate as an
evaluation indicator, it does not reflect the front-end code’s 
structural characteristics. MBLUE [15] proposes a new model 
evaluation method, but in practice, it does not fully reflect these 
characteristics either. Therefore, we designed a structure cross 
entropy (SCE) to evaluate different models. The equation can 
be represented as the following:  

SCE ൌ
∑ H൫𝑦ො, 𝑦൯  H ቀ𝑦୮୰ୣ

, 𝑦
୮୰ୣቁ  H ቀ𝑦୮୭ୱ୲

, 𝑦
୮୭ୱ୲ቁ

ୀ

3L

where 𝐿 is the number of sentences in the test dataset, and Hሺ∙ሻ 
represents a cross-entropy function. 𝑦 denotes the original DSL 
code sequence.  𝑦୮୰ୣ  represents the DSL code sequence 
processed by preorder traversal. 𝑦୮୭ୱ୲  indicates the DSL 
code sequence processed by postorder traversal. 𝑦  is the 
ground truth for the j-th image. 𝑦ఫෝ  is the prediction for the j-
th image. Fig. 2 displays different traversal methods in each 
column.  

We utilize the results of three traversal methods to evaluate 
tree structure because they can uniquely determine a tree [4].  

Figure 2 displays an example of DSL code traversal 
sequences using different traversal methods, with the input 
being the ground truth and generated trees, respectively.  

Figure 2. The diagram of structure evaluation 

Ⅳ. Experiments and results 

A. Setup

Data: We implement the proposed front-end code
generation method on two datasets: Pix2code and our own 
dataset.  

The first one is the Pix2code dataset provided by [2], which 
contains 1742 Web GUI-code pairs. 

The second one is our dataset. We call the dataset 
Pix2code++. It consists of 3483 Web GUI-code pairs. The 
reason for establishing Pix2code++ because the examples in the 
Pix2code dataset are too simple for existing methods. Half of 
the data in the Pix2code++ dataset consists of Pix2code, and we 
create the other half. The code length of half of the dataset we 
created is, on average, twice as long as Pix2code. As a result, 

the average length of Pix2code++ is 1.5 times longer than 
Pix2code. 

Implementation Details: First, we normalize the size of the 
input GUI screenshot to 224x224. For the encoder part, we use 
a pre-trained ResNet-152-based encoder. We employ an 
embedding layer for the input DSL code to learn the feature 
representation. We utilize Adam [8] as an optimizer in various 
training processes. 

Baseline methods: We present the results of two baseline 
methods to verify the effectiveness of decoders based on multi-
head attention. These methods utilize LSTM and GRU, 
respectively. We employ these two models as decoders because 
these two models are widely used in code generation from GUI 
screenshot tasks. For example, LSTM [2, 16], GRU [3]. 
Therefore, we set the decoder of baseline-1 as LSTM and 
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baseline-2 as GRU. Both baseline methods are identical except 
for the decoder.  

B. Evaluation Results

Table 1. compares our method with Baseline-1 and
Baseline-2 under the Pix2code and Pix2code++ datasets for test 
cross entropy. When comparing our method with other methods, 
our method outperforms the baselines for both evaluation 
methods, and this result is more evident for the Pix2code++ 
dataset. The above results demonstrate that our proposed 
method is more advantageous in decoding complex GUI 
screenshots features. The results using structure cross entropy 
are shown in Table 2. Compared with cross-entropy, the 
difference between the results obtained by structural cross-
entropy is more pronounced. 

Table 1. Comparison of the cross entropy of our method with 
baseline-1, baseline-2 on two test datasets. 

Dataset 
Cross entropy 

Baseline-1 Baseline-2 Ours 

Pix2code 0.0580 0.1062 0.0441 

Pix2code++ 0.0795 0.1176 0.0376 

Table 2.  Results for structural cross-entropy 

Dataset 
Structure cross entropy 

Baseline-1 Baseline-2 Ours 

Pix2code 0.6014 0.6738 0.4786 

Pix2code++ 1.8335 1.2459 1.0383 

Ⅴ. Conclusion and prospect 

This paper addresses the problem of generating code from 
GUI screenshots. We design a decoder method based on the 
multi-head attention mechanism. Our method achieves the best 
performance on both public and self-collected datasets. Our 
experiments demonstrate that the multi-headed attention 
mechanism in the decoder is highly effective. Moreover, we 
propose a novel evaluation metric that can comprehensively 
assess the structure of the generated code. We plan to employ a 
larger-scale model to handle real-world datasets for future work. 
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