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Abstract—Electric vehicles (EVs) have undergone an explosive
increase over recent years, due to the unparalleled advantages
over gasoline cars in green transportation and cost efficiency.
Such a drastic increase drives a growing need for widely deployed
publicly accessible charging stations. Thus, how to strategically
deploy the charging stations and charging points becomes an
emerging and challenging question to urban planners and electric
utility companies. In this paper, by analyzing a large scale electric
taxi trajectory data, we make the first attempt to investigate this
problem. We develop an optimal charging station deployment
(OCSD) framework that takes the historical EV taxi trajectory
data, road map data, and existing charging station information as
input, and performs optimal charging station placement (OCSP)
and optimal charging point assignment (OCPA). The OCSP and
OCPA optimization components are designed to minimize the
average time to the nearest charging station, and the average
waiting time for an available charging point, respectively. To
evaluate the performance of our OCSD framework, we conduct
experiments on one-month real EV taxi trajectory data. The
evaluation results demonstrate that our OCSD framework can
achieve a 26%-94% reduction rate on average time to find a
charging station, and up to two orders of magnitude reduction on
waiting time before charging, over baseline methods. Moreover,
our results reveal interesting insights in answering the question:
“Super or small stations?”’: When the number of deployable
charging points is sufficiently large, more small stations are
preferred; and when there are relatively few charging points
to deploy, super stations is a wiser choice.

I. INTRODUCTION

The fast development of sustainable energy technology
enabled a drastic increase of Electric Vehicles (EVs) in recent
years. Electric vehicles (including plug-in electric cars, hybrid
electric cars, etc.) have unparalleled advantages over gasoline
cars in green transportation and cost efficiency. With zero total
emissions, we can achieve significant environmental savings
by transferring to EVs. A research [6] has shown that if we
switched from gasoline cars to EVs, we would see a 42 percent
average reduction in carbon dioxide (CO2) emissions, which
is a primary culprit in the global warming. On the other hand,
the fuel (electricity) costs for EVs are significantly lower than
for similar gasoline cars. As a result, EV sales have undergone
an explosive increase over recent years. As highlighted in [2],
in US, hybrid vehicle sales in 2013 grew by 14% over 2012,
and sales of electric cars grew by 83%!

A new challenge raised by such fast development of EV
market is the explosive increase of new charging station
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deployment. It is important to understand where to place new
charging stations with how many charging points, so as to
catch up the needs, while maintaining a reasonable utilization
rate of the deployed charging resources. For instance, since
2010, the number of electric taxis in Shenzhen in China keeps
increasing, and there were in total 780 plug-in electric taxis
by November 2013. However, only 25 public charging stations
were built, with a large variance in sizes, say, some with more
than one hundred charging points, and some with only two or
three. From the EV taxi trajectory data we collected (in Nov
2013), a taxi on average spends four minutes to find a charging
station, and waits in queue for 15 minutes before charging.

In operations research, the station sitting problem has been
studied for deploying gas stations and hydrogen filling sta-
tions [14], [21], [32], [29]. The problem is primarily formu-
lated as facility location on a network of roads [14], [21]
or as a subset of the existing gasoline station network [32].
However, these facility location models cannot be applied
for charging station sitting, because of the following two
reasons. (1) Differing from the gasoline cars, the charging
durations of EVs are very long, i.e., around a few hours, which
yields long waiting time for incoming EVs (when charging
points are all occupied). Existing models do not capture
such (long) charging time and waiting time. (2) The existing
facility location models all require trip origin-destination data
as an input, which is in general hard to obtain. To our best
knowledge, there is no systematic work so far to study how
to strategically deploy charging stations for EVs.

Hence, in this work, we are motivated to investigate this
problem!: Given a city with L existing charging stations and
their locations and numbers of charging points, if a total of
K new charging stations and M new points are available to
deploy, where to deploy those new stations, and how to assign
the number of charging points to each charging station, so
as to minimize the average time needed for an EV driver
to find and wait for an EV charging point. We develop an
Optimal Charging Station Deployment (OCSD) framework,
which takes a historical EV taxi trajectory data, road map
data, and existing charging station information as input, and
performs Optimal Charging Station Placement (OCSP) and

Note that we are interested in the deployment of public charging stations,
that are available to every EV. The deployment of private charging stations
should follow a different deployment manner.
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Optimal Charging Point Assignment (OCPA). These OCSP
and OCPA optimization components are designed to minimize
the average time to travel to charging station, and the average
waiting time for an available charging point, respectively. Our
main contributions are summarized as follows.

¢ In our OCSD framework, we design a behavior extraction
method, that can extract sub-trajectories for EV taxis
from their trajectory data. The sub-trajectories represent
three typical behaviors of EV taxis, namely, seeking for
charging, on charging, and traveling.

« We formulate the charging station placement problem us-
ing integer programming, which is NP-hard. We provide
a polynomial time approximation algorithm to solve the
problem with provable error bound.

o Given the selected locations for charging stations, we
formulate the charging point assignment problem as an
average utilization minimization problem, and obtain a
closed form optimal solution.

« To evaluate the performance of our OCSD framework, we
conduct experiments on one-month real EV taxi trajectory
data. The evaluation results demonstrate that our OCSD
framework can achieve a 26%-94% reduction rate on
average time to find a charging station, and six times
reduction on waiting time before charging, over baseline
methods. Moreover, our results reveal interesting insights
in answering the question: “Super or small stations?”:
When the number of deployable charging points is suffi-
ciently large, more small stations are preferred; and when
there are relatively few charging points to deploy, super
stations is a wiser choice.

The rest of the paper is organized as follows. Section II
formally defines the problem, presents the overview and
outlines the key components of our framework. Section III
provides detailed methodology of OCSD. Section IV presents
evaluation results on a large-scale EV taxi trajectory data.
Section V discusses two extensions of our OCSD framework.
Related works are discussed in Section VI, and the paper is
concluded in Section VIIL.

II. OVERVIEW

In this section, we define the charging station planning prob-
lem, describe the dataset we have, and outline the framework
of our methodology.

A. Problem Definition

An electric vehicle (EV) uses one or more electric motors
for propulsion, and can be directly powered from an external
charging station. Nowadays, a full charging of an EV takes
around a few hours. Once fully charged, the mileage that
the EV can drive varies for different EV models. In our
dataset, since all EVs are taxis with the same model, they
usually can drive 200 kilometers with a full charge, and a
complete charging takes around 1.5 to 2 hours. Due to the
fast development of the sustainable energy technology, the
number of EVs grows drastically these years, which drives
the demands for building more charging stations. In Shenzhen,

China, there were in total 780 EV taxis (by the statistic
in November 2013). However, only 25 charging stations are
available in Shenzhen, with a huge variance on numbers of
charging points among the stations, e.g., some stations have
more than one hundred charging points, and some other have
only two or three charging points. In this paper, by utilizing
the historical GPS trajectory data of EV taxis in Shenzhen,
we make the first attempt to investigate how to strategically
deploy charging stations and points across the city to facilitate
the public EV charging.

Over time, a GPS-equipped electric vehicle reports its GPS
locations, that form a trajectory as defined below.

Definition 1 (Trajectory). A trajectory is a sequence of
spatial points that a moving object follows through space as
a function of time. Each point thus consists of a trajectory ID,
latitude, longitude, and a time stamp.

A trajectory of an EV taxi can be divided in three types of
sub-trajectories, representing a sequence of time-stamped GPS
locations, where the EV taxi is seeking for charging stations,
on charging, or traveling. We define each of them as follows.

Definition 2 (Seeking sub-trajectory). A seeking sub-
trajectory represents that an EV taxi is going to a charging
station to charge, which includes the trace that the EV seeks
the charging station, and the trace (if any) that the EV waits
in a queue for an available charging point.

Definition 3 (Charging sub-trajectory). A charging sub-
trajectory represents that an EV taxi is charging at a charging
point.

Definition 4 (Traveling sub-trajectory). A traveling sub-
trajectory represents that an EV taxi is traveling after a
charging and before a seeking sub-trajectory, where the EV
may drive with or without a passenger, or park at a restaurant
for lunch, etc.

These sub-trajectories basically label an EV trajectory into
three possible behaviors?. We will elaborate how we label the
sub-trajectories on our EV taxi GPS data in Section III. Note
that the three sub-trajectories can be viewed as three states,
where an EV traverses among them over time. For example,
Figure 1 illustrates two taxi trajectories, where they are divided
and labeled into the above three sub-trajectories. It indicates
that each EV trajectory follows a loop of traveling, seeking,
and charging. Moreover, a charging sub-trajectory is always a
sequence of the same location at a charging station.

We are interested in the average time duration elapsed dur-
ing the seeking sub-trajectories, which indicates the average
time an EV taxi driver spends for seeking and waiting at
a charging station. We define the starting GPS record of a
seeking sub-trajectory as a seeking event of an EV taxi, which
indicates that the EV taxi starts seeking for a charging station.
We thus define the idle time of a seeking event as follows.

Note that these sub-trajectories are exclusive, namely, each EV GPS record
belongs to one and only one sub-trajectory.
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Definition 5 (Idle time). The idle time of a seeking event
is the time elapsed during the seeking sub-trajectory, which
includes the seeking time for the EV to reach the charging
station, and the waiting time (if any) for the next available
charging point.

Problem Definition. Given a set of locations of L existing
charging stations with their numbers of charging points, a set
of seeking events, and a budget of K new charging stations
with a total of M new charging points, we aim to find
the optimal locations to open the new charging stations and
optimal assignment of new charging points to the stations, so
as to minimize the average idle time of each EV taxi to find
and wait at a charging station.

B. Data Description

Given the problem defined above, we describe the datasets
we use in this paper, including (1) the EV taxi trajectory data,
(2) road map data, (3) existing charging station data. Note for
consistency, we choose these datasets aligned within the same
time domain. Below, we describe each of them, respectively.

EV Taxi Trajectory Data. We have an EV taxi GPS dataset
from Shenzhen City during November 1st—30th, 2013. There
were in total 780 registered EV taxis, where 490 of them were
equipped with GPS sets. Hence, we have the GPS trajectories
for those 490 EV taxis. For each EV taxi, the average recording
frequency for GPS location is about 40 seconds. The data
contains 23,967,501 GPS records of EV taxis. Each records
contains five useful fields for our study, including the taxi ID,
time stamp, latitude, longitude, passenger load indicator.

Road Map Data. In our study, we use the Google
Geocoding API [3] to retrieve a bounding box of Shenzhen
City, specified by the south-west and north-east corners as
(22.447203,113.769263) and (22.70385,114.33991) in lati-
tude and longitude, which covers an area of roughly 1,804
km? in Shenzhen City.

With the bounding box, Shenzhen road map data were
obtained from OpenStreetMap [4], which contains all road
segments and their road types. There are in total six levels of
roads in Shenzhen, specified in OpenStreetMap data. Table I
lists all the road types and their numbers of roads. In Figure 2,
the top five levels of roads are drawn, with the width and
darkness indicating their levels.

Charging Station Data. By November 2013, there were
in total 25 charging stations within the bounding box of
Shenzhen city. Figure 2 indicates the spatial distribution of
those charging stations, with marker size indicating the number
of charging points deployed in the stations. Charging stations

TABLE I
SHENZHEN ROAD MAP DATA

[ Level | Type [ Counts [[ Level | Type [ Counts ]
1 Motorway 563 4 Secondary 868
2 Trunk 258 5 Tertiary 1,393
3 Primary 745 6 Unclassified | 16,829
Total number of all roads: | 20,656

with more than 50 charging points are super stations marked
with large circle symbols, where those with less than 50
charging points are marked as small stations. We observe that
there are three super stations.

® Small Station

~@Large Station

Fig. 2. The distribution of charging stations in Shenzhen
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Fig. 3. Framework of our solution
Figure 3 presents our optimal charging station deployment
(OCSD) framework. It takes three datasets as inputs, including
EV trajectory data, city road map data, and existing charging
station and charging point distribution. The whole framework
consists of three stages (highlighted as three dashed boxes):
(1) road map griding, (2) extracting sub-trajectories, (3) opti-
mal charging station placement and charging point assignment.
o Stage 1 (Road map griding): First, the road map is
divided into n equal size grids. Then, to estimate the
average travel time between neighboring grids, we take
all taxi traveling events that traverse between the two
neighboring grids in the trajectory data, and calculate
the average as the estimate of travel time between them.
Thus, an n by n travel time matrix T of adjacent grids
is formed. Using the adjacent travel time matrix, we
compute the shortest path travel time across all grid pairs.
o Stage 2 (Extracting sub-trajectories): This stage ex-
tracts charging, seeking, and traveling sub-trajectories
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from the raw EV taxis trajectories, by combining the EV
taxi trajectory data with the charging station information.

o Stage 3 (Optimal Charging Station Deployment,
OCSD): Given a constraint of K new charging stations
and M charging points to deploy, we propose a two-
step optimization framework to tackle the optimal charg-
ing station placement (OCSP) problem and the optimal
charging point assignment (OCPA) problem. The OCSP
problem is formulated as an integer linear programming
problem, with an objective of minimizing the average
time for EV drivers to find a charging station. A polyno-
mial time approximation algorithm is provided to find the
solution. The OCPA problem is formulated to minimize
the average utilizations of charging points, where a close-
form optimal solution is derived.

Table II provides notations used throughout the paper.

TABLE II
KEY NOTATIONS AND TERMINOLOGIES
’ Notations ‘ Description ‘

Go = {gi}, | Go is the grid set of the gridded road map.

1 <1< ng there are in total ng grids.

T = [T3] no by mo adjacent average travel time
matrix.

G C Go Subset of Go, containing n grids in giant
strongly connected component of Go.

C =[Cyj] n by n shortest path travel time matrix.

Wi, W W;: the number of seeking events in grid
gs W =3, caW

K, L, M K: the number of new charging stations; L:
the number of existing charging stations;
M: the number of new charging points.

y = [y;], 1 < | Station placement vector, indicating a grid

1<n g; has a charging station, if y; = 1, and
no station, otherwise.

X =[X;;] 1 < | Grid assignment matrix, indicating grid g;

5,7 <n is assigned to grid g; for charging, if
X;; =1, and Otherwise, X;; = 0.

Ae Arrival rate of seeking events in the regions
that station £ covers.

e Service rate of a charging point in station
¢, namely, the average number of electric
vehicles being served per hour.

e The charging point utilization in station /.

III. METHODOLOGY

In this section, we elaborate each stage of our framework
outlined in Figure 3.

A. Road Map Griding

Since the deployment of a charging station depends on many
factors, such as the availability of the location, the topology of
the underlying power grid network, and etc, it is not necessary
to find the exact locations to deploy new charging stations.
Therefore, we aim to locate the most suitable regions. At the
initial stage, our approach divides the road map into equal
size grids with a given side length s in latitude and longitude.

Then, the station placement problem turns into finding the
right grids to deploy charging stations, by transferring the
continuous spatial space into discrete grid ID space. This
griding method is flexible in adjusting the side-length of the
grid, which enables us to identify good candidate regions in
different granularities during the charging station placement
stage. Moreover, we take the grid-based method for the ease
of implementation in practice (which is adopted by many
works [44], [25]), instead of other partitioning methods, such
as voronoi cell [45] or road network based method [12].

With gridded road map, we estimate the average travel time
between grids using the collected taxi trajectory data, and
compute the shortest grid paths among grid pairs. The grid
level shortest path distance is taken as an important input for
the optimization stage to decide which grid to deploy a new
charging station. Below, we elaborate how we construct the
shortest path travel time matrix.

Adjacent average travel time matrix 7. Let Gy = {g,}
denote the set of grids on the road map, with respect to a
side length s, where ng = |Go| is the total number of grids.
We define a grid transition event as a taxi sub-trajectory, that
travels within a grid g; until the first time it traverses to an
adjacent grid g;. The time duration of the sub-trajectory is
thus the travel time of the grid transition event. Suppose that
in the historical trajectory dataset, there are in total v;; grid
transition events from g; to its neighboring grid g;, each of
which takes t;;(k) travel time with 1 < k < v;;. The average
travel time from grid g; to g; is computed as follows:

Vij

Ty =Y tij(k)/vij,
k=1

where the ng by ng square matrix 7' = [T};] represents
the average travel time among adjacent grids. Note that the
diagonal entries of T indicates the travel time within each
grid. In our study, we estimate within-grid travel time as the
average travel time inside each grid.

Shortest path travel time matrix C. Given the grids and
the adjacent average travel time matrix 7'. The road map can
be represented as a graph, with grids as nodes. There is a
directed edge from grid g; to g;, if the corresponding entry
T;; > 0. Since only grids that cover some road segments have
historical taxi GPS data, we first extract the giant strongly
connected component (GSCC) [16] denoted as G C G from
all grids. Then, based on the graph of GSCC, we can compute
the shortest path between any pair of grids, with the sum
of the weights of its constituent edges minimized, which
can be obtained using Dijkstra’s algorithm or Bellman-Ford
algorithm. In the rest of the paper, we will primarily work on
this GSCC G, instead of G, since the GSCC components are
grids covering roads, non-GSCC grids are off the road network
and have no traffic. We denote the shortest path distance from
grid g; to g; as C;;, and C = [C};] thus form the shortest
path travel time matrix among grids. Figure 4 highlights the
gridded road map of Shenzhen city (of total 1, 508 grids), with
a giant connected component of 760 grids.
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Fig. 4. Griding road map and GSCC extraction

B. Extracting Sub-Trajectories

As elaborated earlier (in Figure 1 in Section II), each EV
taxi periodically takes three actions in loop, namely, traveling,
seeking, and charging. We now present how we extract these
actions (i.e., sub-trajectories) from our data.

Charging Sub-trajectory extraction. Given the fact that
the time for charging an EV taxi is usually within a cer-
tain charging interval, say, 30 minutes to 150 minutes for
the current electric vehicles, we can detect charging sub-
trajectories by combining the trajectory data and the existing
charging station information. To be precise, if a sub-sequence
of GPS records indicates the same location at an existing
charging station, and the time staying there is within a charging
interval, then these GPS records are labeled as a charging sub-
trajectory.

Seeking and Traveling Sub-trajectory extraction. We
detect seeking events based on two common sense rules,
(1) prior to each charging sub-trajectory, there is a seeking
sub-trajectory, which determines the ending point of the sub-
trajectory; (2) a seeking sub-trajectory starts from dropping the
last passenger before the next charging sub-trajectory. After
finding the charging and seeking sub-trajectories, we label all
other un-labeled records as traveling sub-trajectories.

Visualization. Consider the starting point of a seeking sub-
trajectory as a seeking event, we highlight the geo-distribution
of seeking events in our data in Figures 5, namely, the road
segments colored by the numbers of seeking events.

C. Optimal Charging Station Deployment (OCSD)

We solve the OCSD problem by proposing a two-stage
optimization framework. We first formulate the optimal charg-
ing station placement (OCSP) problem as an integer pro-
gramming problem, which is NP-hard. We provide an LP-
rounding based approximation algorithm to solve it with
provable error bounds. Then, we model the optimal charging
point assignment (OCPA) problem as a minimization problem
of average charging point utilization, which minimizes the
average proportion of time each charging point is occupied.
Below, we elaborate these two components in detail.

1) Optimal Charging Station Placement (OCSP): We first
formulate the problem of placing K charging stations, given
L initial charging stations, with the objective to minimize the
average travel time for an EV to find the nearby charging
station.

Fig. 5. The spatial distribution of seeking events

Given the gridded road map G = {g;} (1 < i < ng), we
denote W, as the total number of seeking events within grid
g; in the trajectory dataset, and W = >_""°, W; as the total
number of seeking events in all grids. Moreover, taking the
shortest path travel time between grids, C' = [C},], as an input,
we are now in a position to formulate the OCSP problem.
Given a total number of K charging stations to deploy, let
y = [y;] denote the deployment configuration, with each y; =
0 or 1 representing whether or not a charging station should be
deployed in grid g;. Given that there exist L charging stations
in L grids in grid set G, Obviously, Zgjec y; < K+ L
should hold. Let X = [X;;] be a 0/1 indicator, representing
whether the EVs which seek for charging stations inside g;,
will step to grid g; for charging.

We aim to find y, indicating the best grids to deploy up to
K stations, and X, the assignment of each non-station grid
to a station grid, such that the average seeking time, i.e., the
travel time to find the nearest charging station, is minimized.
This problem is formally formulated as below.

1
min = > > WiXyCy (1
9i€G g; €G

9; €G
Sy <K+ 3)
9; €G
Xij < yj, Vgi,g; €G (4
Xijy; = 10,1}, Vgi,g; € G (5)
yj =1, Vg; € G, (6)

G, in constraint eq.(6) represents the set of L grids with
existing charging stations, Gy, C G, which can also be empty,
indicating that initially no charging station is deployed. The
objective function in eq.(1) captures the average travel time
for each EV to find a charging station. The first constraint
(in eq.(2)) states that each EV has to be served by a charging
station. The constraint in eq.(3) presents the budget of charging
stations, namely, in total no more than K + L charging
stations can be deployed, including the existing L stations. The
constraint in eq.(4) guarantees the validity of the assignment,
that is, if grid g; is assigned to g; for charging with X;; = 1,
g; should has a charging station, i.e., y; = 1. The constraint
in eq.(5) states that each X;; or y; has to be either 0 or 1,
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where the constraint in eq.(6) specifies the existing charging
stations by setting those y;’s to be 1.

Approximate Solution with LP-Rounding. The above
integer linear programming (ILP) problem is a generalized
uncapacitated k-median problem [31] except that there exist
L given medians. A k-median problem is proven to be NP-
hard [31], thus the above ILP problem is NP-hard, and
approximating this problem is as hard as approximating a set
cover problem, where there is no polynomial-time algorithm
that is guaranteed to find the optimal solution for all instances,
unless P = NP.

In the literature, there are a variety of approximation al-
gorithms that employ LP-rounding method to solve the k-
median problem, which contains two stages, namely, LP-
relaxation and rounding the optimal fractional LP solution.
For example, the LP-rounding algorithm used in [11], [35]
achieves a 6% approximation for k-median problem. [22] gives
a 3-approximation algorithm using primal-dual schema. [19]
utilizes randomization to improve the approximation guarantee
to 2.408, which is further improved in [13] to (1 + 2/e).
Note that these approximate algorithms for solving k-median
problem with different error bounds and computational com-
plexities. In this study, we adopt and extend the approximation
solution algorithm proposed in [28] based on LP-rounding.
Other algorithms can be chosen, depending on the specific
requirements on the error bound and complexity. Our approx-
imation solution algorithm consists of two stages.

Stage 1: LP relaxation. We first relax the ILP (in eq.(1)-
(6)) to LP by allowing 0 < X;;,y; < 1 to be fractional values.
The resulting LP can thus be solved in polynomial time with
fractional X;; and y; obtained.

Stage 2: Rounding LP solution. The idea behind the
rounding mechanism is as follows. Suppose the optimal solu-
tion to ILP problem has cost (i.e., the objective function value)
BYY,. Since this solution is feasible for the linear program-
ming, the optimal LP solution has some cost B%. < B,
Following [28], we apply the rounding algorithm below which
leads to up to 2K + L centers and has cost at most 4BZ’;§.

In the LP solution, we denote C; = > 9,€G X;;Ci; the
seeking time for an EV in grid g; to find a charging station. The
total cost for all seeking events is thus B,y rp = ZZ W, C;.
We will find a set of 2K + L center grids such that each grid
g; is within distance at most 4C; to its nearest center grid.
Then, the total cost of seeking for charging stations will be at
most 4Bopt,LP-

Algorithm 1 outlines the approximation algorithm. The
charging station grid set F' is empty initially (Line 2). We start
from those grids with the smallest values of C;. We thus pick
the grid with the smallest C; and include ¢; as a center grid
(Line 4-6). We denote the set of grids whose distance from g;
is at most 2C; as P(g;,2C;). We use g; to cover any grid g,/
such that P(g;,2C;) V P(gi,2Cy) # ¢ (Line 7-11). To see
this, notice that since the two grid sets overlap, they have some
grid gy in common, and thus C;;y < Cip+Cly < 2C;42Cy <
4Cs. Therefore, define the extended neighborhood of grid g;
as ‘_/; = {gz’ S G|P(g“2CZ) \Y P(gy,?C,L/) # (;5} Now, we

can state the algorithm simply. Theorem 1 below provides the
approximation bound of Algorithm 1, which can be proven by
extending the proof in [28].

Algorithm 1 Approximate Charging Station Sitting Algorithm

1: Solve the LP and compute the values C;;
2: F {},

3: while G # {}: do

4:  pick the ¢g; € G' with the smallest C;;
5: F+ F V gi;

6:  y; =1;

7. for g; € V; do

8 yJ:OandX]Z:L

o for g; € G\V; do

10: Xj,' =0;

1: G+ G\Vi;

Theorem 1. Algorithm 1 selects |F| < 2K + L grids, with
the cost function in eq.(1) Cost(F) < 4Bopt, 1P

Proof: (Proof sketch.) [28] proves that when there is
no existing charging stations (L = 0), namely, all y;’s are
unknown initially, Algorithm 1 selects |F'| < 2K grids, with
the cost function in eq.(1) Cost(F) < 4Bopt 1.p-

In our ILP, we have L initial y; = 1, where in the relaxed
LP solution, those grids should have the smallest C;’s, since
all seeking events from those grids will find the charging
stations in the same grid, namely, corresponding X;; = 1.
Hence, L initial stations will be extracted first, and the left K
stations follow the error bounds in [28]. Overall, Algorithm 1
selects |F'| < 2K + L grids, with the cost function in eq.(1)
COSt(F) < 4Bopt,LP~ |
Practical issue. When we apply Algorithm 1 to deploy K new
charging stations, it yields up to 2K new charging stations.
Thus we use K/2 as the input to the OCSD framework to
compensate the difference.

2) Optimal Charging Point Assignment (OCPA): Given
the K charging stations deployed by the above placement
solution, we are now in a position to address the problem
of assigning M > K charging points to those stations, with
minimized average portion of time for each charging point
being occupied.

Based on the station placement solution y; (with 1 < j <
n), there are in total K 4 L charging stations, and each grid
g; € G without a charging station is assigned to one nearby
charging station (specified by X;;). Hence, the entire city is
divided into K + L clusters of grids, each of which centers at
a charging station grid, and all EVs that start to seek charging
station from g; will go to its cluster center grid for charging.

We denote S = [Sg] with 1 < ¢ < K + L as the number
of existing charging points in each station ¢ (before new
deployment), and S = [S] as the number of new charging
points deployed in station ¢. Obviously, >, S, < M holds.
We consider the arrival pattern of EVs at each station follows
Poisson distribution, thus the arrival process at each station ¢
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can be formulated as an M/M/(S; 4+ S¢) queue by queueing
theory3 [33]. The arrival rate (denoted as A\y) of station £ can
be extracted from the trajectory data as the average number
of per hour EVs that seek for charging. The service rate
(denoted as py) of each charging point can be empirically
obtained from the trajectory data, as the average number of
per hour EVs being served at a charging point. Based on
the queueing theory [33], The M/M/(S; + S;) model is
a type of birthdeath process. The charging point utilization,
captured by p; = M\¢/((S¢ + Se)pue) requires p; < 1 for
the queue to be stable (namely, otherwise, the queue length
would go to infinity). py represents the average proportion of
time each charging point is occupied. Hence, our charging
point assignment goal is to minimize the average charging
point utilization in all charging stations, which is formally
formulated as follows.

K+L \ K+L
Y
min : E — s.t E Se=M. ()
1= (Se+ Se)pe =1

Theorem 2 below states the optimal assignment solution to
the OCPA problem.

Theorem 2. Let r = ZELLK Xefie and ro = N/ (per).
The optimal solution of Sy’s to the optimal charging point
assignment (OCPA) problem is

K+L
Sy = (M + M)ry— Sy, with M = Z Sy.
(=1

Proof: The objective in eq.(7) can be rewritten as

K+L

D

(=1

1
(Se + Se)pe/ e

Arithmetic-Harmonic Means Inequality [10] in eq.(9) holds
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S
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where the equality holds if and only if a; = ---
apply the inequality eq.(9) to eq.(8), and obtain

= a,. We

K+L

D

(=1

1 (K + L)?
A 2 SRKTL 5 ’
(Se +Se)pe/Ae =1 (Se+ Se)pe/Ae

where the equality is attained with Sy = (M + M Yre— S'g. [ |

IV. EVALUATIONS

To evaluate the performance of our optimal charging station
deployment (OCSD) framework, we conduct comprehensive
experiments using a large scale EV taxi trajectory dataset.
OCSD framework consists of two components, i.e., optimal
charging station placement (OCSP) and optimal charging

3M stands for Markovian; M /M /c means that the system has a Poisson
arrival process, an exponential service time distribution, and c servers.

point assignment (OCPA). By comparing with baseline algo-
rithms, the experimental results demonstrate that OCSD can
achieve a 26%-94% reduction on the average seeking time to
find a charging station, and up to two orders of magnitude
reduction on the waiting time. Moreover, when considering
the total idle time, namely, the sum of the travel and waiting
time, our OCSD framework outperforms all other methods
with significant idle time reduction. Below, we present the
baseline algorithms, experiment settings and results.

A. Baseline Algorithms

Baselines for charging station placement. Given a road map
grid structure G = {g; }, we denote G, as the subset of L grids
with existing charging stations. Hence, the goal of charging
station placement is to find up to K grids from G/GL to
deploy new charging stations.

(1) Random station placement (Rand-SP): This baseline
algorithm uniformly at random chooses K grids from G/Gp,
to deploy new charging stations.

(2) Top seeking events (Top): This baseline method chooses
those grids from /G, with the top number of seeking events
in the EV trajectory data.

The output of each baseline method is an indicator vector
y = [y;] for grids. y; = 1 indicates that a charging station
is built in grid g;, and y; = 0, otherwise. Note that the total
number of non-zero entries in y (i.e., the number of grids with
charging stations) is K + L, with K newly deployed plus L
existing stations. Then, we assume that a seeking event in a
grid g; without a charging station always goes to the closest
charging station for charging, namely, the grid g; with the
shortest path travel time. This assignment is expressed with a
grid assignment matrix X = [X;;], with X;; = 1 representing
that seeking events from grid g; will go to grid g; for charging,
and with X;; = 0, otherwise. The state-of-the-art methods for
hydrogen and gas station sitting [14], [21], [9] cannot be used
for comparison, since they require the source-destination of
each trip, which is hard to obtain.

Baselines for charging point assignment. Given the indicator
vector y = [y;], listing K + L grids with charging stations,
we have the following two baseline algorithms to assign M >
K + L charging points to those K + L stations.

(1) Random point assignment (Rand-PA): This baseline ran-
domly assigns M charging points to K + L charging stations.
(2) Average charging point assignment (Aver.): This baseline
method equally assigns M charging points to K + L charging
stations. To be precise, firstly, each station is assigned d =
|M/(K 4 L)] charging points. The rest r = M — d(K + L)
charging points are assigned to r = M — d(K + L) randomly
selected grids from G k41, i.e., the set of grids deployed with
charging stations.

The output of each baseline method is a vector S = [S]
(1 < ¢ < K+ L) for those grids with charging stations, where
S¢ indicates the number of new charging points assigned to
the station in grid /. By combining with the vector of existing
charging points numbers, i.e., S = [S’z], we obtain a vector
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S = [5@], with Sp = Sg + Sy, indicating the total number of
charging points in grid ¢ after new deployment.

B. Experiment Settings

From the sub-trajectory extraction, we obtain in total N =
44,159 seeking sub-trajectories from all 490 EV taxis during
November 2013. We run 3-fold cross validation as follows.
We divide the one month data into three parts, namely, (1)
11/01/2013-11/10/2013, (2) 11/11/2013-11/20/2013, and (3)
11/21/2013-11/30/2013. We take seeking events from each
dataset to deploy charging stations and points using our
OCSP and OCPA methods and different baseline algorithms,
respectively. Then, we use seeking events from the other two
datasets to calculate the average seeking, waiting time, and
their sum (idle time). The overall results are the average of
the results obtained by three different folds.

e Seeking time. The charging station placement method deter-
mines the seeking time of seeking events. The starting grid g;
of a seeking sub-trajectory indicates where the seeking sub-
trajectory starts from. The grid assignment matrix X, i.e., the
output of a charging station placement method, answers which
grid g; the seeking event should go to. The corresponding
shortest path travel time Cj; (from grid g; to g;) is thus the
seeking time for the seeking event.

o Waiting time. Each seeking sub-trajectory is followed by
a charging sub-trajectory, thus we know the actual charging
time of each seeking event. Then, for a seeking event, we
know (1) its starting time, starting grid, and charging time
from the trajectory data, and (2) its charging grid, seeking time
from the output of the charging station placement method. By
taking into consideration of S, i.e., the output of a charging
point assignment method, we can thus mimic the EV taxi
charging processes and estimate the waiting time based on the
availability of charging points when each taxi arrives. Figure 6
illustrates how the waiting time is computed. There is only one
charging point, where EV 1 arrives when the charging point
is idle, thus it takes no waiting time; EV 2 arrives when EV 1
is charging, it waits until EV 1 finishes charging. The EV 3
arrives while EV 1 is charging and EV 2 is waiting, and it has
to wait until EV 2 finishes charging.

we | Gan S, S Es f,

l—l _____ J EV1 ﬁ,‘ Traveling
(N P R N EV2eiimy ek
‘Waiting
I Ll _EV3egay
) time

Fig. 6. Evaluation process

Table III lists configurations used in our evaluation.

TABLE III
EVALUATION CONFIGURATIONS

{0.005,0.01,0.02,0.03}
{5,10,---,45,50}

{100, 150, - - -, 500, 550}
OCSP, Rand-SP, & Top
OCPA, Rand-PA, & Aver.

Side length (s)

New Charging stations (K)

New Charging points (M)
Charging station placement methods
Charging point assignment methods

C. Seeking Time Evaluation

Figures 7-9 show the comparison on average seeking time
when applying our OCSP and the baseline algorithms (i.e.,
Rand-SP and Top). The results with a grid side length of
0.005 are presented in Figure 7. As the number of new
charging stations (K) increases, the average seeking time,
namely, on average each EV spends to find a charging station,
decreases for all the methods. Our OCSP requires about 98s
to 159s with 5 to 50 new charging stations deployed, where
Rand-SP and Top methods require 139s to 235s and 178s
to 246s to reach the nearest charging station, respectively.
Denote TP (K), TT°P(K), and TEnd=5FP(K) as the
seeking time needed with OCSP, Top, Rand-SP methods,
when the number of newly deployed charging stations is K.
The seeking time reduction rate ATF(K) is defined as the
relative reduced seeking time by our OCSP method from the
baseline algorithm:

AT (K) = (T3 (K) = TP (K)) /TP (K).

where * represents Rand-SP or Top method. Hence, from the
result, in Figure 7 (side length s = 0.005), OCSP achieves
a seeking time reduction rate from 26% (with K = 30) to
48% (with K = 5) over Top, and 54.7% (with K = 5) to
94.4% (with K = 20) over Rand-SP. Figures 8-9 show
consistent results with the grid side length set to 0.01 and
0.02, respectively.

D. Waiting Time Evaluation

Figures 10— 12 present the comparison results on the waiting
time between our OCPA and the baseline algorithms (i.e.,
Rand-PA and Aver.). To eliminate the effect of the station
placement stage, we fix the station distribution generated by
OCSP, Top, or Rand-SP, and compare their average waiting
time. Due to the limited space, we in this section only present
the results with OCSP for placing the stations, and vary
the number of new stations K and new charging points M.
Figure 10 shows that when K = 5 new stations are deployed
(given 25 existing stations), our OCPA leads to the lowest av-
erage waiting time. As the number of allowed charging points
M increases, the average waiting time decreases drastically,
say, from 495s (with M = 100) to 20s (with M > 300).
On the other hand, Aver. yields roughly doubled average
waiting time over OCPA. Rand-PA performs even worse, with
the average waiting time from 1300s (20 minutes) to 3100s
(50 minutes). This happens because Aver. treats each station
equally, namely, evenly distribute the number of charging
points to every station, without considering the underlying
uneven distribution of seeking events.

Figures 11-12 present similar results for K = 25 and
K = 50, respectively. From the results, we observe consistent
patterns as that in Figure 10. One thing to note here is that
given the same number of charging points M to assign, the
average waiting time (for more charging stations, larger K)
is slightly higher than that of less stations (smaller K). This
happens because the more stations, the less number of charging
events each station may cover; thus, the less chance a charging
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point is going to be reused. Consider two extreme cases:
given 500 charging points, in one scenario, we build only one
charging station, with all 500 points assigned to it; in another
scenario, we build 500 charging station, where each has only
one charging point. Obviously, for the seeking time (time
needed to go to the station), 500 stations are far better than
one station. However, for waiting time, one super station (with
500 points) will provide highest utilization for all charging
points. This reveals an interesting trade-off that the charging
station sitting problem is different from gas/hydrogen station
sittings: to build more super stations or small stations? We
will investigate this question by considering the sum of both
seeking and waiting time in the next subsection, and provide
an empirical answer using our dataset.

E. Idle Time Evaluation

Now, we consider the average idle time, namely, the sum
of average seeking and waiting time. Given three charging
station placement methods, OCSP, Top, and Rand-SP, and
three charging point assignment methods, OCPA, Aver., and
Rand-PA, we evaluate the idle time for all nine possible
combinations. We observe that any combination with Rand-
SP or Rand-PA will yield very large average idle time, say,
larger than 3,000s for most of the cases. Hence, we omit
those results for brevity, and only present results for our
framework OCSP+OCPA, and baseline combinations includ-
ing OCSP+Aver., Top+OCPA, and Top+Aver. The results
for K = 5 and s = 0.01 are presented in Figure 13, where

we observe that our OCSP+OCPA always performs the best
for different numbers of charging points, M, over other the
baseline combinations. Moreover, as the number of charging
points M increases, the average idle time decreases quickly,
and reaches a convergence state when M is large enough.
Figures 14—15 present consistent results for the configurations
of {K =25,5=0.01} and {K = 50,s = 0.01}. We observe
that for the cases with smaller M, i.e., less charging points,
more stations lead to a longer idle time; on the other hand,
for the cases with larger M, i.e., more charging points, more
stations yield a shorter idle time. This answers the trade-
off question, “Super or small stations?”’: When a sufficient
number of charging points are allowed, more smaller stations
are better; when the number of charging points is insufficient,
supper stations are preferred. This happens simply because of
the trade-off between the seeking time and the waiting time.
When M is small, the waiting time is much larger than the
seeking time, thus super stations are better. On the other hand,
when M is large, the waiting time decreases significantly,
say, even lower than the seeking time (e.g., around 20s for
M > 300 in Figure 10-12), more small stations become better.

The evaluation results (on seeking, waiting, idle time) from
three folds are quite similar, beacause the geo-distributions of
seeking events in the three periods are almost identical. There
are 527 grids with non-zero seeking events. Figure 16 show
the geo-distributions of seeking events in each ten-day period,
where we can see that the geo-distributions are all the same.

1384



4 T T T T T T T T T T
3  11/01/2013-11/10/2013 —— .
2 F i
1+ i
0
4 T T T T T T T T T T
, 3 11/11/2013-11/20/2013 ------ | i T
% % B l ' § : -"‘! :
2 0 | i Ut R :‘"L'q'ul."f B
joTs)
£ 4
< 3
& 2
B 1
X 0
4 T T T T T T T T T T
3 max -
2 F i
1r ; ] .
0 L L 38 S o L i
0 50 100 150 200 250 300 350 400 450 500 550
Grid ID

Fig. 16.  Geo-distributions of seeking events in three periods. The last
subfigure presents the geo-distribution of rush-hour arrival rates in Nov. 2013.

V. DISCUSSIONS

Now, we present two extensions to OCSD framework,
including charging point assignment using rush-hour seeking
demands, and adaptation to time-varying seeking policy.

A. Charging Point Assignment using Rush-Hour Demands

OCPA aims to assign charging points to minimize the av-
erage portion of time for each charging point being occupied.
However, in reality, the peak demands, i.e., maximum hourly
number of seeking events, usually occur during rush hours
and become the bottle-neck that leads to high waiting time.
Consider a time interval 7', e.g., T' = 4 hours. Denote the
seeking event arrival rate for station ¢ during the ¢-th interval
of length T, as )\gt), with 1 < t < t,,4,. Each station £ is
thus associated with a sequence of seeking event arrival rates.
We denote A\y'** := max; /\y) as the maximum arrival rate of
station ¢ among all intervals from 1 to t,,4,, Which captures
the rush hour seeking demands of station ¢. To account for
such rush hour effect, the stations with larger demand variation
should be assigned with more charging points, so they can
perform well even during the rush hours. For those stations
with relatively flat temporal distribution of seeking demands,
we can assign relatively less charging points to allow a bit
higher utilization ratio. To achieve this goal, the objective
function in OCPA stage should be tuned to capture the rush
hour station utilizations rather than the average utilizations,
which can be done by substituting the average arrival rate A,
with the maximum arrival rate \}*** as follows. i, remains
the same, since the serving rate is in general stable over time.

K+L

Y Si=M
=1

The optimal solution can Abe obtainedA by following The-
orem 2 as Sy = (M + M)r;"*® — Sy, where rj** =
Aznax/(lul[r,maw) and ,,,max — . 1 )‘Ena:v//l

K+L Amam

mln S.t.: (10)
Z (Se + Sﬁ

Comparing OCPA using average arrival rates vs rush hour
arrival rates, the results hinge on the difference between the
geo-distributions of the two sets of arrival rates. The last
subfigure in Figure 16 presents the geo-distribution of the rush
hour arrival rates, which is almost identical to the distribution
of average arrival rates, shown in the first three subfigures.
Thus, the solution and system performance in terms of seeking,
waiting, and idle time do not show difference when using the
average arrival rates vs rush hour arrival rates. Here, we omit
the evaluation results for brevity.

B. Time-Varying Seeking Policy

Throughout the design of OCSD, we assume the seeking
policy as: EV taxis always go to the nearest charging station
for charging. Going beyond this basic assumption, OCSD
framework can be extended to a (more general) time-varying
seeking policy, namely, an EV taxi chooses a charging station
depending on both the seeking time (i.e., travel distance)
and how busy the station is at that time. Inspired by many
studies where multiple types of objectives exist (e.g., [23],
[27], [26]), the formulation can be written below as a time-
dependent linear combination of OCSP and OCPA with a
trade-off parameter4 0 > 0. Then, an EV taxi will choose
a charging station that is relatively nearby and less busy.

tmaz (®) (t)
; Wi v 0
win: 35 5 (X0 Moxte, s
t=1 g;€G \g:€G e (S; + Sj),ug‘ )
(11)
stiy X =1, Vgi € Got € [Litmas]  (12)
g9;€G
Yy <K+1L, (13)
g;€G
X9 <y, 91,95 € Gyt € [Ltmas)  (14)
X@,yj ={0,1},  Vgi.g; € Gt € [Ltmaa] (15)
y; =1, Vg; € G, (16)
> Si=M, 17)
9;€G
) _ (t) 3 () ) _ (t)
)‘j - ZgiEGWi Xij /T, Hyjo = ZgiGGM X /T
with Mi(t) as the number of EV taxis (from grid g;) bemg

served during the ¢-th interval, and *(*) represents the variable
% during the t¢-th interval of length 7'. In the above joint
optimization, the boolean variable X Z(;) is time-varying, which
means that at different time intervals, seeking events occuring
at grid ¢g; may go to different stations for charging.

The joint optimization problem eq.(11)-(17) is an integer
nonlinear programming problem, which can be solved by
optimization solver toolboxes such as BARON [37], [34]
(employing branch-and-bound method [15], [24]), AIMMS
Outer Approximation (AOA) [1] (utilizing standard outer
approximation algorithm [17]), etc.

40 captures the weight between seeking time and charging point utilization
in deploying charing stations and points, which is determined empirically.
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Result Analysis. In this work, we can safely assume the
nearest charging policy, where the solutions of y and .S, as well
as the evaluation results, do not have much difference from
assuming the time-varying seeking policy. This is because in
the dataset, we observe that for more than 90% of seeking
events, EVs went to the nearest station for charging. We
explain this phenomena by the fact that the current number
charging stations is still far from sufficient, and they are
distributed in the city in general far away from each other
(comparing to the distribution of gas-stations). Hence, when a
taxi driver wants to charge the vehicle, the primary concern in
mind is still the travel distance, given other choices of stations
would be roughly equally busy.

VI. RELATED WORK

To the best of our knowledge, we are the first to utilize
large-scale electric vehicle (EV) trajectory data to facilitate
urban deployment of charging stations and charging points. In
this section, we discuss three topics that are closely related
to our work, including (1) urban computing, and (2) facility
location, and (3) EV charging.

Urban Computing, as an emerging research area, integrates
urban sensing, data management, data analytic, and service
providing together as a unified process for an unobtrusive
and continuous improvement of peoples lives, city operation
systems, and the environment [43]. The goal is to solve a
variety of emerging problems in urban areas, such as traffic
congestion, energy consumption, and pollution, based on the
data of traffic flow, human mobility, and geographical data,
etc. In [44], they inferred the real-time and fine-grained air
quality information throughout a city, based on the air quality
data reported by existing monitoring stations and a variety
of data sources observed in the city. In [30], they tried to
identify the hot spots of moving vehicles in an urban area
via a novel, non-density-based approach, called mobility-based
clustering. In [39], they proposed a framework, called DROF,
to discover regions of different functions in a city using both
human mobility among regions and points of interests (POIs)
located in a region. In [41], the authors tried to sense the
refueling behavior and citywide petrol consumption in real-
time, based on the trajectories of vehicles. In [42] and [36],
they tried to discover the traveling companions and gathering
patterns of vehicles, respectively. In [40], [38], authors exploit
the phone user mobility data collected from cell towers to
perform Point-of-Interest prediction and outdoor advertising.
As a classic urban computing problem, we in this paper aim to
design a framework to strategically deploy charging stations
and points in a city for EVs.

Facility location has been studied extensively in the lit-
erature, primarily in operations research. It concerns with
the optimal placement of facilities to minimize transportation
costs while considering various factors and constraints, such
as avoiding placing hazardous materials near housing and
competitors’ facilities. In particular, there are a variety of
works investigating the station sitting problem for deploying
gas stations and hydrogen filling stations [32], [14], [21], [8],

[20], [29]. The problem is primarily formulated as facility
location in road networks [14], [21], [8], [20] or as a subset
of the existing gasoline station network [32]. However, these
facility location models cannot be applied for charging station
sitting, because of the following two reasons. (1) Differing
from the gasoline cars, the charging durations of EVs are
long, i.e., around a few hours, which yields long waiting time
for incoming EVs (when charging points are all occupied).
Existing models do not capture such (long) charging time
and waiting time. (2) The existing facility location models
all require trip origin-destination data as an input, which is
in general hard to obtain. To address these challenges, we in
this work make the first attempt to study how to strategically
deploy charging stations and assign charging points for EVs.

EV charging. The surge of EVs imposes a significant load
on the distribution network: with AC Level 2 charging, EVs
can be charged at up to 80A at 240V [5], a load of 19.2kW,
whereas a typical North American home has an average load
of only 1kW. Therefore, a single EV being charged at the peak
Level 2 rate could impose an instantaneous load as large as
that imposed by nearly twenty average homes. There are a
few works addressing how to control the EV charging load.
Ardakania et al. [7] propose a distributed control algorithm
that adapts the charging rate of EVs to the available capacity
of the network ensuring that network resources are used
efficiently and each EV charger receives a fair share of these
resources. They obtain sufficient conditions for stability of
this control algorithm in a static network, and demonstrate
through simulation in a test distribution network that their
algorithm quickly converges to the optimal rate allocation.
Gerding et al. [18] design an online auction protocol for this
problem, where EV owners use agents to bid for power and
state time windows in which an EV is available for charging.
They couple a greedy allocation algorithm with the occasional
“burning” of allocated power, leaving it unallocated, To adjust
an allocation and achieve monotonicity and thus truthfulness.
They consider two variations: burning at each time step or on-
departure. Both mechanisms are evaluated in depth, using data
from a real-world trial of electric vehicles in UK to simulate
system dynamics. All above works consider how to balance
between the electricity distribution and EV charging load,
given an existing charging station infrastructure, where they
do not address our charging station deployment and charging
point assignment problems, which are the focus of this paper.

VII. CONCLUSION

In this paper, we study the problem of how to strategically
deploy charging stations and charging points throughout a
city so as to minimize the average time each electric vehicle
needs to spend for finding an available charging point for
charging. We develop a data-driven optimal charging station
deployment (OCSD) framework that takes a variety of data
sources as inputs, including EV taxi trajectory data, city road
map data, and existing charging station information, and per-
forms optimal charging station placement (OCSP), and optimal
charging point assignment (OCPA). These two optimization

1386



components are designed to minimize the average time to
travel to the nearest charging station, and the average waiting
time for an available charging point, respectively. To evaluate
the performance of our OCSD framework, we conduct ex-
tensive experiments using one-month EV taxi trajectory data.
The evaluation results demonstrate that our OCSD framework
achieves a 26%-94% reduction rate on the average seeking
time to find a charging station, and six times reduction on the
waiting time before charging, over the baseline methods.

Our results also answer an interesting question: “Super or
small stations?”: When a sufficiently larger number of charg-
ing points can be deployed, more small stations are preferred;
when relatively less charging points can be deployed, super
stations is a wiser choice. This observation motivates us to
further investigate the inconsistency of the charging station
deployment for different K, and tackle the issue by designing
a roll-out strategy for charging station deployment process. We
leave this problem for our future work.
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