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Abstract—Graph contrastive learning (GCL) has gained in-
creasing interest as a solution for graph representation learning.
In GCL, graph augmentation is essential to generate contrastive
samples used for contrastive learning. Recently, most existing
methods employ learnable graph view generators to augment
graphs based on the node probability distribution adaptively.
However, these methods cannot ensure that semantic-related
nodes are preserved during graph augmentation, leading to
performance degradation. To tackle this issue, we propose a novel
approach called Semantic-aware Graph Contrastive Learning
(SGCL), which can generate high-quality contrastive samples by
only augmenting semantic-unrelated nodes so as to facilitate the
performance of GCL on downstream tasks. Specifically, we first
design a Lipschitz constant generator to compute the Lipschitz
constants that measure the semantic relevance of each node.
Then, we propose the Lipschitz graph augmentation to augment
graphs while only dropping these semantic-unrelated nodes with
small Lipschitz constants. Furthermore, we propose semantic-
aware contrastive learning to obtain more refined representations
by contrasting the graph-level representation of anchor graphs
and high-quality generated samples. Experimental results on
unsupervised learning and transfer learning demonstrate the
effectiveness of SGCL compared to state-of-the-art methods.

Index Terms—Graph Contrastive Learning, Graph Classifica-
tion, Graph Neural Networks, Self-supervised Learning

I. INTRODUCTION

Graph neural networks (GNNs) [1]–[3], which capture the

structural information of graphs by aggregating the neigh-

borhood [4], have shown great power in various domains

such as drug-drug interaction prediction [5], recommended

systems [6], [7], and sentiment analysis [8]–[10]. Due to

their outstanding graph-representational power, GNNs can

model complex real-world entities, including molecules [11]

and social networks [12]. However, most GNN methods are

trained in a supervised manner, limited by the number of true

annotations [13].

More recently, self-supervised graph contrastive learning

(GCL) [14], [15], which does not rely on finely annotated

data to obtain a refined graph representation, has received

a surge of interest. GCL is a powerful method that pre-

trains a GNN in a self-supervised manner, pulling positive

pairs closer and pushing negative pairs farther apart [16],

thereby facilitating the model fine-tuning on downstream tasks

∗ The first two authors contributed equally to this work.

� Corresponding authors.

Figure 1. The effect of different graph augmentation presets on generating
samples. Augmentation 1 drops a semantic-unrelated node, but Augmentation
2 drops a semantic-related node in the same node probability distribution.

[17]. One of the essential components in the GCL is graph

augmentation, employed to generate contrastive samples [18].

The generated sample and its corresponding anchor graph

are treated as a positive pair. The anchor graph and the

contrastive samples generated by other graphs are treated as

negative pairs. Most previous methods [19]–[21] randomly

utilize graph perturbations as graph augmentation, such as

node dropping, edge perturbations, and attribute masking.

However, random perturbations lead to the corruption of

discriminative semantics, which makes huge label distribution

differences between generated samples and anchor graphs

[22]. These differences misguide contrastive learning and lead

to performance degradation.

To address the problem, some methods [20], [21] pick graph

augmentation per dataset by tedious trial-and-errors, which

increases the labor cost and limits the framework’s generality.

Recently, some state-of-the-art GCL methods [12], [23], [24]

develop learnable graph view generators to reduce non-trial

efforts. These generators select different augmentations based

on the probability distribution of nodes. They translate the

probability distribution into node weights and then choose a

corresponding graph augmentation operation for each node.

However, the probability distribution of nodes does not always

equate to semantic relevance. Some nodes in a graph may
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have different semantic relevance despite having a similar

probability distribution. The fact that augmentation depends on

nodes’ probability distribution leads to a significant variation

in generated samples for different graph augmentation presets.

As shown in Figure 1, we use different graph augmentations

to generate contrastive samples from one anchor graph with

the same node probability distribution. The first graph aug-

mentation identifies the semantic-related nodes and preserves

the discriminative semantics of the original graph, enabling the

classifier to identify its salient attribute accurately. Conversely,

the second graph augmentation misjudges semantic structure

and generates a sample that corrupts the salient semantic

structure, resulting in the classifier misjudging its label. How-

ever, an ideal augmentation preset is not prior knowledge, and

choosing the better augmentation takes non-trial efforts based

on the node probability distribution. Therefore, during graph

augmentation, it is crucial to prioritize the semantic relevance

of the nodes rather than the probability distribution. An ideal

graph augmentation method should preserve these semantic-

related nodes in the contrastive samples, thereby maintaining

the discriminative semantics of the original graphs.

Inspired by the above insight, we propose a novel Semantic-

aware Graph Contrastive Learning (SGCL) to generate high-

quality samples and improve the performance of graph con-

trastive learning on downstream tasks. Specifically, we first

design a Lipschitz constant generator to calculate the node

Lipschitz constants to determine the semantic relevance of

each node in anchor graphs. We further propose the Lips-

chitz graph augmentation, which combines Lipschitz constants

to obtain the augmentation probability and only augments

semantic-unrelated nodes with smaller Lipschitz constants

to generate contrastive samples. We also propose semantic-

aware contrastive learning to improve the capture of refined

representations by contrasting the graph-level representation

of anchor graphs and high-quality generated samples. In

addition, we conduct extensive experiments to demonstrate

that SGCL outperforms the previous state-of-the-art methods.

We highlight the major contribution of this paper as follows:

• We propose a novel Semantic-aware Graph Contrastive

Learning (SGCL), which can generate high-quality con-

trastive samples with more discriminative semantic in-

formation and improve the performance of GCL on

downstream tasks.

• We define the Lipschitz constant of GNNs under a

certain graph augmentation, demonstrating that a graph

augmentation operation with a smaller Lipschitz constant

leads to less semantic corruption.

• We propose the Lipschitz graph augmentation, an ef-

fective mechanism to generate high-quality contrastive

samples by only dropping semantic-unrelated nodes with

smaller Lipschitz constants.

• We conduct extensive experiments on various datasets

to evaluate our proposed SGCL. Experimental results

demonstrate the effectiveness of SGCL compared to state-

of-the-art methods.

II. RELATED WORK

A. Graph Classification

Graph classification [25]–[27] is a fundamental task in

various domains, including chemistry [28], biology [5], and

social networks [29]. Early graph kernel methods [30]–[32]

employed atoms as vertices and bonds as edges to learn the

representation of molecular graphs. Recently, Graph Neural

Networks (GNNs) [33]–[35] have achieved greater success in

graph classification tasks through message passing and infor-

mation propagation between neighbor nodes [1]–[3]. After ob-

taining the node representation, GNNs normally use a pooling

function to aggregate information [36], [37] and obtain the

graph representation used to solve graph classification. How-

ever, the performance of these supervised methods depends on

a large amount of fine-annotated graphs [38], which may not

be available in real-life scenarios. To tackle this problem, our

work focuses on self-supervised graph contrastive learning,

which can overcome the scarcity of fine annotations.

B. Graph Contrastive Learning

Inspired by the success of contrastive learning in computer

vision domains [39], [40], self-supervised graph contrastive

learning has received tremendous attention. Graph Contrastive

Learning (GCL) [14], which pulls positive pairs closer and

pushes negative pairs apart, can be categorized into two

groups. One group aims to capture abundant information by

contrasting local and global representation. For example, In-

foGraph [41] is designed to maximize the mutual information

between graph-level representation and node-level represen-

tation in different granularity to obtain expressive represen-

tation for graphs. Another group [19]–[21] aims to capture

the discriminative semantics between different views, learn-

ing a refined representation tolerant to graph augmentation.

Although our proposed method also follows this previously

established framework, we improve the framework with the

Lipschitz constant generator to make our model more effective.

C. Graph Augmentation

The quality of augmented samples has a crucial influence

on GCL performance, making graph augmentation significant.

Although GraphCL [20] proposes four types of graph aug-

mentation operations, including Node Dropping, Edge Pertur-

bation, Attribute Masking, and Sub-graph, the improvement

comes at the price of tedious manual trial-and-error. To solve

this problem, some GCL methods [12], [23], [24] design a

learnable view generator to augment anchor graphs desirably

according to the node probability distribution in different

datasets. However, the node probability distribution does not

necessarily equal semantic relevance, leading to the fact

that methods with view generators cannot preserve semantic-

related nodes and have a significant variation of augmented

samples in different graph augmentation presets. Therefore,

we propose Lipschitz graph augmentation, which preserves

semantic-related nodes during graph augmentation, to generate

high-quality samples with more discriminative semantics to

improve the performance of GCL on the downstream tasks.
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III. PRELIMINARIES

In this section, we provide formal definitions for the termi-

nology used in this paper for the sake of clarity.

A. Definitions of Graph

In this paper, we denote a graph as G = (V,H,A),
where V = {v1, v2, · · · , v|V |} denotes the node-set, H =

[h
(0)
1 ,h

(0)
2 , · · · ,h(0)

|V |] ∈ R
|V |×d(0)

denotes the initial node

representation, d(0) is the dimension of the initial node repre-

sentation, A ∈ R
|V |×|V | denotes the adjacency matrix, and |V |

is the number of nodes. We employ a GNN encoder f(·, ·;θ) to

obtain the final node representations, which can be described

as follows:

H(l) = f(H,A;θ), (1)

where H(l) = [h
(l)
1 ,h

(l)
2 , · · · ,h(l)

|V |] ∈ R
|V |×d(l)

denotes the

node representation obtained by the GNN encoder f(·, ·;θ), l
is the layer of the GNN encoder f(·, ·;θ), d(l) is the dimension

in layer l, and θ is parameter of the GNN encoder f(·, ·;θ).
Furthermore, we denote the edge connecting nodes vi and

vj as eij . Following the previous methods [42], [43], we

reasonably assume that the probability of the edge eij only

depends on the representations of vi and vj .

Definition 1 (Edge Probability). We denote the probability
of edge eij as P (eij |(h(l)

i ,h
(l)
j )), which is calculated by the

representations of nodes vi and vj ,

P (eij |(h(l)
i ,h

(l)
j )) = δ((

h
(l)
i

di
+

h
(l)
j

dj
)wT

ij), (2)

where h
(l)
i and h

(l)
j are the representations of vi and vj ,

di and dj are the degree of vi and vj , wij ∈ R
1×d(l)

is the
weight parameter, and δ(·) is the logistic function.

As edges are unique, we assume that all edges in a graph

are conditionally independent [44] so that the probability of

the graph G can be defined as follows:

Definition 2 (Graph Probability). We denote the probability
of graph G as P (G|H(l)), which is calculated by the proba-
bility of each edge,

P (G|H(l)) =
∏
i,j

p(eij |(h(l)
i ,h

(l)
j )), (3)

where H(l) = [h
(l)
1 ,h

(l)
2 , · · · ,h(l)

|V |] ∈ R
|V |×d(l)

denotes the
representation of nodes in graph G.

B. Graph Augmentation and GNNs Stability

Contrastive samples are generated by applying graph aug-

mentation operations such as node dropping, edge perturba-

tion, and attribute masking to an anchor graph. It is argued

that edge perturbation and attribute masking can be regarded

as a special case of node dropping. Furthermore, previous

studies [20], [21] have shown that node dropping has more

advantages for downstream tasks compared to the other two

methods. Therefore, this paper only focuses on node dropping

as a graph augmentation. The contrastive sample generated

from G is denoted as Ĝ = (V̂ , Ĥ, Â), and we present the

specific definition of graph augmentation as follows,

Definition 3 (Graph Augmentation). Given a Graph G, the
graph augmentation operation is denoted as Φ(·, ·, ·), and the
generated sample Ĝ can be denoted as,

Ĝ = Φ(G, ρ|V |, P (V )), (4)

where G is the input anchor graph, |V | is the number
of nodes in the graph G, ρ is a predefined augmentation
ratio, ρ|V | is the number of dropping nodes, and P (V ) =
{P (v1), P (v2), · · · , P (v|V |)} is the set of augmentation prob-
ability.

Based on the definition, we further represent graph augmen-

tation in the following three cases:

(1) When generating a sample by dropping one specific node

vr, the graph augmentation is denoted as Ĝ = Φ(G, 1, vr).
(2) When generating a sample by dropping nodes randomly,

the graph augmentation is denoted as Ĝ = Φ(G, ρ|V |, 1).
(3) When generating a sample by dropping a set of nodes with

augmentation probability, the specific graph augmentation

is denoted as Ĝ = Φ(G, ρ|V |, P (V )).

During graph augmentation, the differences between anchor

graphs and contrastive samples can be measured by topology

distance and representation distance. The topology distance

can be equipped with a distance metric DT (·, ·), which can

be described as follow:

DT (G, Ĝ) = ‖A− Â‖, (5)

where A is the adjacency matrix of an anchor graph G, and

Â is the adjacency matrix of the contrastive sample Ĝ.

We also define that the representation distance under a GNN

f(·, ·;θ) can be equipped with a distance metric DR(·, ·),
which can be described as follow:

DR(G, Ĝ) = ‖f(H,A;θ)− f(Ĥ, Â;θ)‖, (6)

where G = (V,H,A) is the anchor graph, Ĝ = (V̂ , Ĥ, Â)
is the contrastive sample, H and Ĥ are the initial node

representation, A and Â are the adjacency matrices. Following

the previous study [45], we then present the definition of GNN

stability corresponding to a specific graph augmentation based

on the above definition:

Definition 4 (GNNs Stability to Graph Augmentation). A
GNN f(·, ·;θ) is K-stable to a certain graph augmentation
Φ(·, ·, ·) with respect to a graph set G = {G1, G2, · · · , GN}:

sup
G∈G

‖f(H,A;θ)− f(Ĥ, Â;θ)‖ ≤ K ·DT (G, Ĝ), (7)

where G = {G1, G2, · · · , GN} is a set of anchor graphs and
DT (G, Ĝ) is the topology distance between anchor graphs
and contrastive samples calculated by Eq.(5).
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Figure 2. The overall illustration of the SGCL framework.

C. The Lipschitz Constant and Lipschitz Continuous

The Lipschitz constant is closely related to the robustness of

a model. In particular, a model with a small Lipschitz constant

is more likely to be robust to perturbations in the input data.

[46]. A function f(·) : X → Y is Lipschitz continuous if there

exists a constant K ≥ 0 such that for all x, y ∈ X :

‖f(x)− f(y)‖ ≤ K‖x− y‖, (8)

where X is the domain of definition, Y is the domain of value,

f(x), f(y) ∈ Y , and ‖ · ‖ denotes the norm of a matrix. The

smallest constant K is the Lipschitz constant of f(·).
IV. METHODOLOGY

In this section, we propose the novel Semantic-aware Graph

Contrastive Learning (SGCL) to improve the quality of gener-

ated contrastive samples and facilitate the efficiency of GCL

on graph classification tasks. We first present the definition

of the Lipschitz constant about GNNs under a certain graph

augmentation and demonstrate the correctness of combining

graph augmentation with the Lipschitz constant. Next, we

present the overall framework of SGCL as shown in Figure

2: Lipschitz constant generator, Lipschitz graph augmentation,

and the final semantic-aware contrastive learning.

A. The Lipschitz Constant of GNNs

Following the definition of the Lipschitz constant and the

stability of GNNs, we present the definition of the Lipschitz

constant about GNNs under a certain graph augmentation:

Definition 5 (The Lipschitz Constant of GNNs). Under a
certain graph augmentation Φ(·, ·, ·), the Lipschitz constant of
a GNN f(·, ·;θ) is defined as follows:

KG = sup
G∈G

DR(G, Ĝ)

DT (G, Ĝ)
, (9)

where DR(G, Ĝ) is the representation distance calculated
by Eq.(6), DT (G, Ĝ) is the topology distance calculated by

Eq.(5), and G is the anchor graph set. If KG is finite, the
GNN f(·, ·;θ) is Lipschitz continuous.

From Eq.(9), we know that if a specific graph augmentation

brings about a larger topology distance and a smaller represen-

tation distance, we will get a smaller Lipschitz constant. The

smaller representation distance can ensure that the contrastive

samples inherit more discriminative semantic information from

anchor graphs, and the larger topology distance can improve

the diversity of samples. Therefore, a graph augmentation with

a smaller Lipschitz constant is desired. Then, we give a more

rigorous theorem of the above analysis. We present the follow-

ing theorem to demonstrate that the semantic differences can

be bounded by Lipschitz constants during graph augmentation:

Theorem 1. Let G be an anchor graph set containing N
graphs, Ĝ be the set of contrastive samples, and YG be the
true label set of G. CE(·, ·) is the cross-entropy function,
and Kρ ∈ (0, 1) is the Lipschitz constant of the function
ρ(x) = log(ex + 1). Under a certain graph augmenta-
tion Φ(·, ·, ·), ∀G ∈ G, the following inequality holds, where
ε‖A‖∞ = maxG∈G DT (G, Ĝ) is the max topology distance,
and W is the weight parameter matrix.

|CE(YG ,G)− CE(YG , Ĝ)| ≤ KGN(1 +Kρ)ε‖A‖∞ · ‖W‖,
(10)

In Theroem 1, the maximum topological distance ε‖A‖∞
is finite under a specific graph augmentation. The norm of

the weight parameter matrix can also be bounded by adding a

regular term in the model. N and Kρ are constants. If a smaller

Lipschitz constant KG is obtained under a graph augmentation

operation, |CE(YG ,G)−CE(YG , Ĝ)| is restricted to a smaller

range, indicating that the label distribution difference between

anchor graphs and contrastive samples is smaller. Smaller

differences in label distribution mean that generated samples

are consistent with the anchor graphs regarding salient at-

tributes, and more discriminative semantics are retained during
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Figure 3. The architecture of Lipschitz constant generator.

graph augmentation. Therefore, the graph augmentation with

a smaller Lipschitz constant can enable contrastive samples

to preserve more discriminative semantic information from

anchor graphs. The full proof of Theorem 1 is presented in

section V.

B. Lipschitz Constant Generator

According to the Theorem 1, applying a graph augmentation

with a smaller Lipschitz constant indicates that the contrastive

samples can preserve more discriminative semantics from

anchor graphs. Therefore, dropping a node with a smaller

Lipschitz constant results in smaller semantic corruption. We

refer to these nodes as the semantic-unrelated nodes in the

anchor graph and others as the semantic-related nodes. In

this subsection, we design the Lipschitz constant generator

to compute the Lipschitz constant of each node. The architec-

ture of the Lipschitz constant generator is shown in Figure

3. For a given node vr, the augmented sample generated

from G = (V,H,A) by dropping it can be represented as

Ĝr = Φ(G, 1, vr) = (V̂r, Ĥr, Âr) according to Definition 3.

And the Lipschitz constant of the node vr can be computed

as in Definition 5:

Kr =
DR(G, Ĝr)

DT (G, Ĝr)
, (11)

where Kr is the Lipschitz constant of the node vr, DR(G, Ĝr)
is the representation distance between anchor graph G and the

generated sample Ĝr computed by Eq.(6), and DT (G, Ĝr) is

the topology distance computed by Eq.(5).

In Lipschitz constant generator, we utilize a GNN fq(·, ·;θq)
to obtain the representation distance DR(G, Ĝr), which can

be described as follows:

DR(G, Ĝr) = ‖H(l) − Ĥ(l)
r ‖, (12)

where H(l) = [h
(l)
1 ,h

(l)
2 , · · · ,h(l)

|V |] is the node representation

of the anchor graph G, Ĥ
(l)
r = [ĥ

(l)
r1 , ĥ

(l)
r2 , · · · , ĥ(l)

r|V |] is the

node representation of the augmented sample Ĝr, and θq is

the parameter of the GNN fq(·, ·;θq).
To obtain the Lipschitz constants of all nodes in the anchor

graph G, we drop each node in turn to generate augmented

samples. We introduce the mask mechanism to realize the node

dropping instead of dropping each node by graph augmenta-

tion. Specifically, we denote M = [m1,m2, · · · ,m|V |] ∈
R

|V |×|V | as the perturbation mask matrix of the anchor graph

G. Taking the vector mr = [mr1,mr2, · · · ,mr|V |] as an

example, it can be computed as follows:

mri =

{
0, i = r

1, i �= r
, (13)

where the i-th element mri equaling to 0 indicates the node

vi is dropped in the generation of augmented sample Gr.

Thus, in obtaining the node representation of augmented

sample Gr, the node information aggregation in a single GNN

layer can be described as follows:

ĥ
(l)
ri = σ

⎛
⎝mri 	 (ĥ

(l−1)
ri +

∑
vj∈Ne(vi)

mrj 	W (l)
q ĥ

(l−1)
rj )

⎞
⎠ ,

(14)

where ĥ
(l)
ri is the representation of node vi at layer l in the

augmented sample Gr, mri is the perturbation mask constant

of node vi during generating Gr, Ne(vi) is the neighbor

node set of node vi in anchor graph G, W
(l)
q is the weight

parameter at layer l in fq(·, ·;θq), and σ(·) is the activation

function. As a result, the mask mechanism stops the dropped

node from passing and aggravating messages, excluding its

contribution to representation learning. However, calculating

node representation with masks in each GNN layer leads to

high computational costs. To optimize the time complexity of

the Lipschitz Constant Generator, we use attention weight [47]

to compute the dropped node’s contribution to other nodes and

delete that, achieving the mask mechanism in a reverse way.

With the Lipschitz constant of each node in the graph G,

we construct the matrix that reflects the semantic relevance

and can be applied to the graph augmentation. The Lipschitz

constant matrix KV is constructed by arranging the Lipschitz

constant of each node, which can be described as follows:

KV = [K1,K2, · · · ,K|V |], (15)

where Ki is a constant, and KV ∈ R
|V |×1.

C. Lipschitz Graph Augmentation

In this subsection, we propose the Lipschitz graph augmen-

tation, which leads to less semantic corruption and generates

high-quality contrastive samples. We propose a simple yet

effective method to augment these semantic-unrelated nodes

indicated by a smaller Lipschitz constant during graph aug-

mentation. Specifically, we first calculate the mean value

of the Lipschitz constant matrix KV in the anchor graph

G = (V,H,A) as a semantic threshold, which can be

described as follows:

K̄ =
1

|V |
∑
i∈|V |

Ki, (16)
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where Ki is the Lipschitz constant of node vi, and |V | is the

number of nodes in G. Then, we binary the Lipschitz constant

of each node as follows:

Ci =

{
0,Ki < K̄

1,Ki ≥ K̄
, (17)

where Ci is the binary Lipschitz constant of node vi, K̄ is

the semantic threshold, C = [C1, C2, · · · , C|V |] denotes the

binary Lipschitz constants matrix of nodes.

We combine the node representation h
(l)
i and the binary

Lipschitz constants Ci to compute the augmentation probabil-

ity of node vi, which can be described as follow:

P (vi|(h(l)
i , Ci)) = Ci + (1− Ci) ∗ δ(h(l)

i wT
i ), (18)

where P (vi) = P (vi|(h(l)
i , Ci)) is the augmentation probabil-

ity of node vi, h
(l)
i ∈ R

1×d(l)

is the representation of node

vi computed by GNN fq(·, ·;θq), wi ∈ R
1×d(l)

is the weight

parameter, and δ(·) is the logistic function.

Based on the augmentation probability, we propose the

Lipschitz graph augmentation to generate semantic-aware

contrastive samples. Following the Definition 3, the graph

augmentation operation can be formulated as follows:

Ĝ = Φ(G, ρ|V |, P (V )), (19)

where P (V ) = {P (v1), P (v2), · · · , P (v|V |)} is the node

augmentation probability set computed by Eq.(18), |V | is

the number of nodes in the anchor graph G, and ρ is the

predefined dropping ratio. With the Lipschitz graph aug-

mentation, semantic-aware nodes indicated by large Lipschitz

constant are retained, and contrastive samples can preserve

more discriminative semantics from the anchor graphs.

Moreover, we intentionally keep semantic-unrelated nodes

to generate semantic-unaware contrastive samples,

Ĝc = Φ(G, ρ|V |, 1− P (V )), (20)

these samples with non-semantic structures complement the

contrastive learning as negative samples, improving the unifor-

mity of feature space and making the captured discriminative

semantics more stable [48].

D. Semantic-aware Contrastive Learning

In this subsection, we utilize a separate GNN encoder

fk(·, ·;θk) with the pooling layer Pooling(·) to obtain the

graph-level representation of all graphs for semantic-aware

contrastive learning. The GNN fq(·, ·;θq) and fk(·, ·;θk) do

not share their parameters but have the same architecture.

Following the previous works [20], we also use a 2-layer MLP

projection head Proj(·) to project the representations to a la-

tent space. For anchor graphs, we argue that nodes with higher

Lipschitz constants contribute more to the graph semantics and

treat the Lipschitz constant as the semantic attribute scores.

The representation of the anchor graph G = (V,H,A) can

be obtained as follow:

zG = Proj(Pooling(fk(H,A;θk)	KV )), (21)

where zG is the representation of graph G, Proj(·) is a two-

layer MLP projection head, 	 denotes a dot product, and

KV ∈ R
|V |×1 is the Lipschitz constant matrix.

However, the graph structures of generated samples are

changed to varying degrees. Therefore, we do not use the

semantic attribute scores to improve the representation learn-

ing of contrastive samples. The representation of contrastive

sample Ĝ = (V, Ĥ, Â) can be obtained as follow:

zĜ = Proj(Pooling(fk(Ĥ, Â;θk))), (22)

where Ĝ is the contrastive sample generated by Eq.(19).

Similarly, the representation of Ĝc = (V, Ĥc, Âc) can be

obtained as follow:

zĜc = Proj(Pooling(fk(Ĥ
c, Âc;θk))), (23)

where Ĝc is the contrastive sample generated by Eq.(20).

Following the previous GCL frameworks [23], our proposed

model maximizes the representation agreement between posi-

tive pairs and minimizes the agreement between negative pairs.

Specifically, we consider the contrastive sample Ĝi and its

corresponding anchor graph Gi as a positive pair (Gi, Ĝi). For

a given anchor graph Gi, we treat the contrastive samples in

the set Ĝ generated from other graphs as negative samples. We

minimize the following semantic-aware loss function followed

InfoNCE [49] to update the model network,

Ls(Gi) = − log
exp (zT

Gi
zĜi

/τ)∑
Ĝj∈Ĝ,j �=i exp (z

T
Gi
zĜj

/τ)
, (24)

where τ ∈ (0, 1] is the temperature hyperparameter. The

function Ls(Gi) realizes contrastive learning by promoting

agreement between positive pairs (Gi, Ĝi) while enforcing

divergence between negative pairs (Gi, Ĝj).
In addition to the contrastive sample set Ĝ, we intentionally

retained some non-semantic nodes to generate Ĝc, used as

an additional negative set to make captured discriminative

semantics more stable to unneeded noise factors. We consider

the anchor graph Gi and the samples in Ĝc as negative pairs.

The complement loss function Lc(·) is then defined as follows:

Lc(Gi) = − log
exp (zT

Gi
zĜi

/τ)

exp (zT
Gi
zĜi

/τ) +
∑

Ĝc exp (zT
Gi
zĜc/τ)

,

(25)

where Ĝi is the contrastive sample generated from G by

Eq.(19). Moreover, according to Theorem 1, the norm of the

weight parameter matrix also influences the Lipschitz graph

augmentation. Thus, we further restrict the label distribution

difference by introducing the regular loss of the weight pa-

rameters, which can be described as follows:

ΘW = ‖W‖, (26)

where W is the weight parameter matrix in Theorem 1.

Therefore, our final objective loss function conflates two losses

and the regular loss of the weight parameter matrix, Ls(·),
Lc(·) and ΘW , which can be described as follow:

L = EGi∈G [Ls(Gi) + λcLc(Gi)] + λWΘW , (27)
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where λc and λW are the predefined hyperparameters to

control the tradeoff among these loss functions.

V. THEORETICAL ANALYSIS

In this section, we first present a rigorous proof of Theorem

1 and four lemmas used for the proof, then give the time

complexity analysis of the pre-training process.

Lemma 1. A function with bounded first-order derivatives
must have a Lipschitz constant over its domain of definition.

Lemma 2. Let ρ(x) = log (ex + 1). This function has a
Lipschitz constant Kρ ∈ (0, 1) over its domain of definition
X , and ∀x1, x2 ∈ X the following inequality holds,

|ρ(x1)− ρ(x2)| ≤ Kρ|(x1 − x2)|. (28)

Proof. The first-order derivative function of ρ(x) is ρ
′
(x) =

ex

ex+1 , whose value domain is [0, 1]. According to Lemma 1,

ρ(x) must has a Lipschitz constant Kρ ∈ (0, 1).

Lemma 3. In G = (V,H,A), the following equation holds,
where h

(l)
i , di are the representation and degree of node vi,∑

i,j
h

(l)
i

di
+

h
(l)
j

dj
=

∑
i h

(l)
i

Proof.

∑
i,j

h
(l)
i

di
+

h
(l)
j

dj
=

h
(l)
1

d1
+ · · ·+ h

(l)
1

d1︸ ︷︷ ︸
d1

+ · · ·+ h
(l)
n

dn
+ · · ·+ h

(l)
n

dn︸ ︷︷ ︸
dn

=
∑
i

di
h
(l)
i

di

=
∑
i

h
(l)
i . (29)

Lemma 4. Let ε‖A‖∞ = max
G∈G

DT (G, Ĝ). Based on the

Definition 5, the following inequality holds,

max
G∈G

DR(G, Ĝ) ≤ KG · ε‖A‖∞. (30)

Proof.

max
G∈G

DR(G, Ĝ) = max
G∈G

[
DR(G, Ĝ)

DT (G, Ĝ)
DT (G, Ĝ)]

≤ max
G∈G

DR(G, Ĝ)

DT (G, Ĝ)
max
G∈G

DT (G, Ĝ)

= KG · ε‖A‖∞. (31)

Theorem 1. Let G be an anchor graph set containing N
graphs, Ĝ be the set of contrastive samples, and YG be the
true label set of G. CE(·, ·) is the cross-entropy function,
and Kρ ∈ (0, 1) is the Lipschitz constant of the function
ρ(x) = log(ex + 1). Under a certain graph augmenta-
tion Φ(·, ·, ·), ∀G ∈ G, the following inequality holds, where

ε‖A‖∞ = maxG∈G DT (G, Ĝ) is the max topology distance,
and W is the weight parameter matrix.

|CE(YG ,G)− CE(YG , Ĝ)| ≤ KGN(1 +Kρ)ε‖A‖∞ · ‖W‖,
(32)

Proof. For convenience, we denote P (G|H(l)) as P (G),

denote P (eij |(h(l)
i ,h

(l)
j )) as P (eij), and denote |CE(YG ,G)−

CE(YG , Ĝ)| as |ΔCE|,
|ΔCE| = |

∑
G∈G

PY(G) logP (G)−
∑
G∈G

PY(G) logP (Ĝ)|

≤ |
∑
G∈G

logP (G)− logP (Ĝ)|,

substituting Eq.(2) and Eq.(3) into the above gives,

|ΔCE| = |
∑
G∈G

[
∑
i,j

log δ((
h
(l)
i

di
+

h
(l)
j

dj
)wT

ij)

−
∑
i,j

log δ((
ĥ
(l)
i

di
+

ĥ
(l)
j

dj
)wT

ij)]|,

let q = (
h

(l)
i

di
+

h
(l)
j

dj
)wT

ij , q̂ = (
ĥ

(l)
i

di
+

ĥ
(l)
j

dj
)wT

ij , and the logistic

function can be transformed into δ(x) = ex 1
1+ex ,

|ΔCE| ≤ ‖W‖ ·
∑
G∈G

|
∑
i,j

[(
h
(l)
i

di
+

h
(l)
j

dj
)− (

ĥ
(l)
i

di
+

ĥ
(l)
j

dj
)]|

+
∑
G∈G

∑
q,q̂

|log (eq̂ + 1)− log (eq + 1)|.

Using Lemma 2, Lemma 3 and Lemma 4, we have the

following,

|ΔCE| = ‖W‖ ·
∑
G∈G

|
∑
i,j

[(
h
(l)
i

di
+

h
(l)
j

dj
)− (

ĥ
(l)
i

di
+

ĥ
(l)
j

dj
)]|

+
∑
G∈G

Kρ

∑
q,q̂

|q − q̂|.

≤ ‖W‖ ·
∑
G∈G

|
∑
i,j

[(
h
(l)
i

di
+

h
(l)
j

dj
)− (

ĥ
(l)
i

di
+

ĥ
(l)
j

dj
)]|

+ ‖W‖ ·
∑
G∈G

Kρ|
∑
i,j

[(
h
(l)
i

di
+

h
(l)
j

dj
)− (

ĥ
(l)
i

di
+

ĥ
(l)
j

dj
)]

= ‖W‖ ·
∑
G∈G

(1 +Kρ)|
∑
i

(h
(l)
i − ĥ

(l)
i )|

= ‖W‖ ·
∑
G∈G

(1 +Kρ)DR(G, Ĝ)

≤ ‖W‖ ·N(1 +Kρ)max
G∈G

DR(G, Ĝ).

≤ KGN(1 +Kρ)ε‖A‖∞ · ‖W‖ (33)

Time complexity analysis. we present the time complex-

ity analysis of the pre-training process. The computational
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complexity of the proposed method mainly depends on four

parts: augmentation probability computation, Lipschitz Graph

Augmentation, Graph representation learning, and Contrastive

Loss. For computing augmentation probability, its time ex-

pense is mainly from the Lipschitz Constant Generator. We

adopt attention weight [47] to approximate the mask mech-

anism, which can decrease the time complexity of the Lip-

schitz Constant Generator from O((|V ||E|2 + |V |)lqB) to

O((|E|2+|V |2+|V |)lqB), where |E| is edge number, lq is the

layer number of fq , and B is batch size. The Lipschitz Graph

Augmentation costs O(2Bρ|V | log |V |), which is equivalent

to the time cost of randomly dropping ρ|V | nodes. The Graph

representation learning process with a three-tower structure

costs O((3|E|2+ |V|)lkB). For Contrastive Loss, the time cost

is O(2B2d), where d is the latent space dimension.

VI. EXPERIMENTS

This section presents experiments to demonstrate our

SGCL’s effectiveness for graph classification. We aim to

answer the following research questions:

• RQ1 How does SGCL perform compared to SOTA?

• RQ2 How do model’s different components contribute to

the performance?

• RQ3 How do hyper-parameters impact the performance?

• RQ4 How do the different encoder architectures and the

label rate impact the performance?

• RQ5 How effectively is the SGCL capturing semantic-

aware nodes to construct contrastive samples?

A. Experimental Setups

1) Datasets: We evaluate the effectiveness of the proposed

SGCL for unsupervised learning tasks and transfer learning

tasks on sixteen real-world datasets.

In the unsupervised experiments, we follow the previous

works [20] to use eight well-known TU datasets [50], which

include four bioinformatics datasets (i.e., DD, PROTEINS,

NCI1, MUTAG) and four social network datasets (i.e., COL-

LAB, RDT-B, REDDIT-M-5k, IMDB-B). Table I summarizes

the detailed statistics of the TU datasets.

In the transfer learning experiments, we first pre-train our

model backbone on Zinc-2M [51] dataset, which includes 2

million unlabeled molecule graphs sampled from the ZINC15

[51] database. Then we finetune our model on 8 benchmark

multi-task binary classification datasets in the biochemistry

domain, which are contained in MoleculeNet [52]. The de-

tailed statistics of the Zinc-2M and MoleculeNet datasets are

summarized in Table II.

2) Baseline: In the unsupervised learning experiments, we

compare our SGCL with three state-of-the-art traditional graph

kernel methods, GL [30], WL [31], and DGK [32], as well

as with seven other self-supervised learning methods: Info-

Graph [41], GraphCL [20], JOAOv2 [21], AD-GCL [53], Sim-

GRACE [54], RGCL [23], and AutoGCL [24]. Among them,

RGCL and AutoGCL each design a learnable graph view gen-

erator and directly select different graph augmentations based

on the probability distribution of nodes. To provide rigorous

TABLE I
STATISTICS FOR UNSUPERVISED LEARNING DATASETS.

Category Datasets #Graphs #Avg.Nodes #Avg.Edges

Molecules

DD 1,178 284.32 715.66
PROTEINS 1,113 39.06 72.82
NCI1 4,110 29.87 32.30
MUTAG 188 17.93 19.79

Social Networks

COLLAB 5,000 74.49 2457.78
RDT-B 2,000 429.63 497.75
RDT-M 4,999 508.52 594.87
IMDB-B 1,000 19.77 96.53

TABLE II
STATISTICS FOR TRANSFER LEARNING DATASETS.

Utilization Datasets #Graphs #Avg.Nodes #Avg.Degree

Pre-training ZINC-2M 2,000,000 26.62 57.72

Finetuning

BBBP 2,039 24.06 51.90
TOX21 7,831 18.57 38.58
TOXCAST 8,576 18.78 38.52
SIDER 1,427 33.64 70.71
CLINTOX 1,477 26.15 55.76
MUV 93,087 24.23 52.55
HIV 41,127 25.51 54.93
BACE 1,513 34.08 73.71

and fair comparative analysis, we use the same underlying

architecture (i.e., GIN [3]) when comparing self-supervised

learning methods. In the transfer learning experiments, we

compare our model with AttrMasking [55], ContextPred [55],

GraphCL, JOAOv2, AD-GCL, RGCL, and AutoGCL, which

are state-of-the-art models in this field.

3) Parameter Settings: In our SGCL, we train the model

with a learning rate of 0.001 in each iteration. We tuned all

hyperparameters of the validation set by manually search-

ing. The sampling ratio ρ in the Eq.(19) is searched in

{0.5, 0.6, 0.7, 0.8, 0.9}, and the best ρ = 0.9 is chosen as

the final sampling ratio. In the Eq.(27), the hyperparameter

λc is searched in {0.0001, 0.001, 0.005, 0.01, 0.05, 0.1}, and

λW is searched in {0.001, 0.01, 0.05, 0.1, 0.2, 0.5}. We choose

λc = 0.01 and λW = 0.01 as the final loss weights. The

temperature parameter τ is searched in {0.1, 0.2, 0.3, 0.4, 0.5}.

τ = 0.2 is the final temperature parameter, where SGCL

achieves the best average performance.

In the Lipschitz constant generator, we utilize the three-

layer GIN [3] as the encoder fq whose encoder architecture is

consistent with the GNN fk to compute the Lipschitz constants

of nodes. But fq and fk do not share their parameters. The

embedding dimension of each hidden layer is 32, and the batch

size is 16 in Lipschitz constant generator.

In the unsupervised learning experiments, we also utilize

GIN [3] as the GNNs encoder fk to obtain the graph-level

representation, which contains three graph convolutional lay-

ers, followed by one sum-pooling layer and a two-layer MLP

projection function. When we finetune the model backbone

on downstream tasks, the projection head is thrown away.

The embedding dimension of each hidden layer is also 32.

The batch size is 128, and the number of epochs is 40 for
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TABLE III
UNSUPERVISED LEARNING GRAPH CLASSIFICATION ACCURACY (%) ON TU DATASETS

Methods MUTAG DD PROTEINS NCI1 COLLAB RDT-B RDT-M-5K IMDB-B A.R. ↓
GL 81.66± 2.11 − − − − 77.34± 0.18 41.01± 0.17 65.87± 0.98 10.5
WL 80.72± 3.00 − 72.92± 0.56 80.01± 0.50 − 68.82± 0.41 46.06± 0.21 72.30± 3.44 8.3
DGK 87.44± 2.72 − 73.30± 0.82 80.31± 0.46 − 78.04± 0.39 41.27± 0.18 66.96± 0.56 9.3

InfoGraph 89.01± 1.13 72.85± 1.78 74.44± 0.31 76.20± 1.06 70.05± 1.13 82.50± 1.42 53.46± 1.03 73.03± 0.87 6.0
GraphCL 86.80± 1.34 78.62± 0.40 74.39± 0.45 77.87± 0.41 71.36± 1.15 89.53± 0.84 55.99± 0.28 71.14± 0.44 5.6
JOAOv2 87.67± 0.79 77.40± 1.15 74.07± 1.10 78.36± 0.53 69.33± 0.34 86.42± 1.45 56.03± 0.27 70.83± 0.25 6.4
AD-GCL 88.74± 1.85 75.79± 0.87 73.28± 0.46 73.91± 0.77 72.02± 0.56 90.07± 0.85 54.33± 0.32 70.21± 0.68 6.4
SimGrace 89.01± 1.31 77.44± 1.11 75.33± 0.09 79.12± 0.44 71.72± 0.82 89.51± 0.89 55.91± 0.34 71.30± 0.77 4.1

RGCL 87.66± 1.01 78.86± 0.48 75.03± 0.43 78.14± 1.08 70.92± 0.65 90.34± 0.58 56.38± 0.40 71.85± 0.84 4.4
AutoGCL 88.21± 0.92 77.81± 0.49 75.12± 0.62 79.16± 0.30 71.09± 0.86 87.35± 0.94 55.51± 1.44 72.05± 0.25 4.6

SGCL (Ours) 89.74± 0.99 79.71± 0.34 75.37± 0.38 79.28± 0.24 72.25± 0.69 90.77± 0.37 56.51± 0.13 72.14± 0.23 1.5

pretraining on all eight TU datasets.

In the transfer learning experiments, we use a five-layer GIN

as our representation learning encoder, followed by a two-layer

MLP projection function. The hidden embedding dimension of

GIN and projection function are both 300. The batch size is

128, and the number of epochs is 80 for pretraining.

B. Performance on Downstream Tasks (RQ1)

In this subsection, we select two experiment scenes: un-

supervised learning and transfer learning to demonstrate the

effectiveness of our SGCL on graph classification.

Performance on Unsupervised Learning. In unsupervised

learning, we use 90% of the total unlabeled data to pre-

train our SGCL and reserve 10% as labeled testing data. We

use the non-linear SVM classifier and perform 10-fold cross-

validation on each TU dataset. To ensure stable experimental

results, we repeat each experiment five times with different

random seeds and report the average as the final result. The

experimental results are summarized in Table III, with the

best results in bold and the second-best results underlined.

AR represents the average rank, and − indicates results are

unavailable in published papers. The baseline results are taken

from their published papers, except for AutoGCL [24], which

we reproduced on our platform, and AD-GCL [53], whose

results obtained from [23]. Based on the results, we can make

the following observations:

• The proposed SGCL achieves the best performance on

6 TU datasets and the best average rank, which val-

idates the effectiveness of our methods. For molecule

datasets, SGCL outperforms the second-best RGCL [23]

by 1.08% on the DD dataset [50]. For social net-

work datasets, SGCL outperforms the second-best self-

supervised method, AutoGCL, by 3.03% on the COL-

LAB dataset. These remarkable performances further

indicate that preserving semantic-related nodes during

graph augmentation can improve the quality of the con-

trastive samples. Compared to GCL methods with view

generators (i.e., AutoGCL, RGCL), SGCL allows for

more accurate identification and retention of semantic-

related nodes with Lipschitz constants, leading to more

stable and effective results.

• It is noticeable that there are some marginal improve-

ments between SGCL and the existing GCL methods.

Compared with SGCL, SimGrace [54] utilizes an un-

usual framework that uses the perturbation of GNNs

instead of graph augmentation, resulting in no seman-

tic corruption but less diversity of contrastive samples.

Therefore, SGCL has some marginal improvements in

some sparse graph datasets(e.g., PROTEINS(0.04%↑),

NCI1(0.16%↑)), which are susceptible to the semantic

destruction caused by graph augmentation. By contrast,

AD-GCL [53], which only uses edge dropping as its

graph augmentation, greatly benefits from the heavy-

dense datasets. COLLAB is the most dense dataset of

all. Thus, SGCL also has a marginal improvement com-

pared with AD-GCL in COLLAB. However, SGCL still

outperforms SimGrace and AD-GCL in average rank.

• In NCI1, all the GCL methods perform worse than

traditional graph kernel method DGK [32]. One of the

possible reasons is that NCI1 contains a large number of

graphs with very low density. The self-supervised GCL

methods cannot capture enough information by contrast-

ing these graphs. However, SGCL improves the quality

of contrastive samples and achieves the best performance

on NCI1 compared to other GCL methods.

Performance on Transfer Learning. In transfer learning, we

first pre-train a backbone on the Zinc-2M dataset and finetune

the model on 8 binary classification biochemistry datasets.

To simulate the real-world scenario, we split the downstream

datasets by scaffold split. The finetuning procedure is repeated

10 times with different random seeds to obtain stable results,

and we evaluate the mean and standard deviation of ROC-

AUC scores on each downstream dataset, which is consistent

with these baselines. All transfer learning performances on the

downstream tasks are presented in Table IV. We present the

best results in bold and the second-best results in underlined.

AR indicates the average rank. The results of the baselines are

taken from their published papers, except for AutoGCL [24],

which we reproduced on our platform, and AD-GCL [53],
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TABLE IV
TRANSFER LEARNING ROC-AUC SCORES (%) ON DOWNSTREAM GRAPH CLASSIFICATION TASKS

Methods BBBP TOX21 TOXCAST SIDER CLINTOX MUV HIV BACE A.R. ↓
No Pre-Train 65.8± 4.5 74.0± 0.8 63.4± 0.6 57.3± 1.6 58.0± 4.4 71.8± 2.5 75.3± 1.9 70.1± 5.4 7.6

AttrMasking 64.3± 2.8 76.7± 0.4 64.2± 0.5 61.0± 0.7 71.8± 4.1 74.7± 1.4 77.2± 1.1 79.3± 1.6 4.5
ContextPred 68.0± 2.0 75.7± 0.7 63.9± 0.6 60.9± 0.6 65.9± 3.8 75.8± 1.7 77.3± 1.0 79.6± 1.2 4.5
GraphCL 69.68± 0.67 73.87± 0.66 62.40± 0.57 60.53± 0.88 75.99± 2.65 69.80± 2.66 78.47± 1.22 75.38± 1.44 6.2
JOAOv2 71.39± 0.92 74.27± 0.62 63.16± 0.45 60.49± 0.74 80.97± 1.64 73.67± 1.00 77.51± 1.17 75.49± 1.27 5.1
AD-GCL 68.26± 1.03 73.56± 0.72 63.10± 0.66 59.24± 0.86 77.63± 4.21 74.94± 2.54 75.45± 1.28 75.02± 1.88 5.5
RGCL 71.42± 0.66 75.20± 0.34 63.33± 0.17 61.38± 0.61 83.38± 0.91 76.66± 0.99 77.90± 0.80 76.03± 0.77 3.1
AutoGCL 68.65± 0.61 72.92± 0.52 61.01± 0.36 62.04± 0.65 82.90± 2.33 70.15± 1.98 75.1± 0.97 74.43± 1.92 6.6

SGCL (Ours) 72.41± 0.88 76.24± 0.32 64.58± 0.39 63.02± 0.55 81.86± 1.90 79.81± 0.89 78.76± 0.39 77.66± 0.67 1.8

TABLE V
ABLATION STUDY ROC-AUC SCORES (%) FOR SGCL ON DOWNSTREAM TRANSFER LEARNING DATASETS (’W/O’ MEANS WITHOUT)

Models BBBP TOX21 TOXCAST SIDER CLINTOX MUV HIV BACE AVG.

w/o VG 70.85± 0.69 75.32± 0.27 63.20± 0.19 60.65± 0.60 76.80± 1.13 69.72± 1.59 78.86± 1.22 74.85± 1.57 71.29
w/o LGA 70.47± 0.70 74.31± 0.40 63.17± 0.32 60.92± 0.51 77.48± 1.29 76.23± 1.69 77.51± 0.39 75.37± 0.81 71.93
w/o SRL 71.91± 0.63 75.72± 0.46 64.21± 0.31 61.92± 0.62 78.78± 2.04 78.04± 1.30 78.51± 0.41 75.79± 1.59 73.11
w/o Lc 71.42± 0.76 75.58± 0.44 63.22± 0.34 61.74± 0.37 81.04± 1.44 76.45± 1.27 78.78± 0.72 76.17± 1.01 73.05
w/o LW 71.67± 0.61 75.85± 0.34 64.04± 0.27 61.56± 0.49 77.38± 2.62 78.58± 0.99 78.12± 0.76 76.03± 0.98 72.90

SGCL (Ours) 72.41± 0.88 76.24± 0.32 64.58± 0.39 63.02± 0.55 81.86± 1.90 79.81± 0.89 78.76± 0.39 77.66± 1.67 74.29

which we obtained from [23]. We can make the following

observations based on the results:

• Although there is no universally beneficial pre-training

scheme, especially for the out-of-distribution scenario

in transfer learning [20], our SGCL achieves the best

performance on 5 out of 8 biochemistry datasets and

the highest average rank compared to other methods.

Guided by Lipschitz constants, our SGCL generates high-

quality contrastive samples, facilitating pre-training to

obtain more discriminative information.

• The proposed SGCL performs best among other GCL

baselines. The possible reason for this better performance

is that our semantic-aware graph augmentation can con-

struct stable contrastive samples with more discriminative

semantics. Moreover, we compare the performance of

SGCL with AutoGCL to demonstrate the crucial role

of preserving semantic-related nodes. Specifically, our

SGCL outperforms AutoGCL by 13.77% on the MUV

dataset and is 4.8 places ahead in the average ranking.

• The performance deterioration on the CLINTOX dataset

can be attributed to the huge difference in Lipschitz

constants between CLINTOX and the pre-training dataset

ZINC15, which makes our method fail to preserve

semantic-related nodes in the CLINTOX dataset. Due to

the different data distributions between the pre-training

and fine-tuning datasets, the Lipschitz constants gener-

ator trained by ZINC15 may not precisely capture the

semantic information in the CLINTOX dataset, leading

to performance degradation of Lipschitz constants. There-

fore, there needs an extensive investigation in the future

to explore how to improve the Lipschitz constants for

such out-of-distribution scenarios in transfer learning.

C. Ablation Study (RQ2)

In this subsection, we conduct ablation experiments to

demonstrate the effectiveness of each component. Specifically,

we introduce each model as follows:

• SGCL w/o VG: We replace the Lipschitz graph aug-

mentation with randomly dropping nodes to generate

contrastive samples.

• SGCL w/o LGA: We construct contrastive samples by

replacing the Lipschitz graph augmentation with a learn-

able view generator (i.e., the node dropping depends on

its probability distribution).

• SGCL w/o SRL: For all anchor graphs and contrastive

samples, we only use the GNN encoder without Lipschitz

constant attributes to obtain their representation.

• SGCL w/o Lc: We remove the complement loss in the

final loss function (i.e., λc = 0)

• SGCL w/o LW: We remove the regular loss of parameter

in the final loss function (i.e., λW = 0)

The overall results of the ablation study are shown in Table

V. We summarize the following findings: (1) Our experimental

results show that SGCL performs better than SGCL w/o VG by

4.21% and SGCL w/o LGA by 3.28%. This demonstrates the

effectiveness of our proposed Lipschitz graph augmentation

(LGA) in improving the quality of contrastive samples, leading

to better representation learning. (2) SGCL w/o LGA also per-

forms better than SGCL w/o VG, which is in accordance with

the findings in previous work [24]. The learnable graph view

generator is superior to augmentation in a random fashion. (3)

SGCL w/o SRL shows a performance gap(1.18%↓) compared
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Figure 4. Sensitivity w.r.t hyperparameter λc, λW , ρ and τ on the average of PROTEINS, DD and IMDB-BINARY.
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Figure 5. Sensitivity w.r.t hyperparameter λc, λW , ρ and τ in Transfer learning experiments.

to SGCL. This is because the improved representation learning

using the node Lipschitz constant better captures information

of semantic-related nodes. (4) SGCL w/o Lc performs worse

than the Full SGCL, which indicates the complement loss

helps the model capture more stable discriminative semantics.

(5) Comparing SGCL w/o LW and SGCL, we observe that

the regularization of parameters through Lipschitz weighting

improves the performance of SGCL by 1.91%. This finding

aligns with the theorem stated in our paper (Theorem 1).

D. Parameter Sensitivity (RQ3)
In this subsection, we evaluate the sensitivity of hyper-

parameters in our SGCL. Specifically, we investigate the

effect of varying the objective loss function hyperparameters

λc and λW , the perturbation ratio ρ, and the temperature

hyperparameter τ in different experimental scenarios. The per-

formance on both transfer learning and unsupervised learning

are respectively shown in Figure 4 and Figure 5, and we have

the following observations:

• The complement loss hyperparameter λc adjusts the

weight of the non-semantic structure involved in con-

trast learning. When λc is close to zero, it leads to

insufficient non-semantic structure, which reduces model

performance. However, the performance also drops when

λc is set to a large value (i.e., 0.05, 0.1), indicating that

too much non-semantic structure can misguide the model.

• The term λW works as a weight regularizer in the

optimization process, so overemphasizing it leads to

performance degradation. A proper setting benefits (i.e.,

λW = 0.01) graph contrastive learning.

• The perturbation ratio ρ controls the scale of the dropped

semantic-unrelated nodes. Compared with the other three

hyperparameters, ρ has a minimal impact on perfor-

mance. Among the reasons are our SGCL only drops

the semantic-unrelated nodes during graph augmentation.

And we still suggest tuning it around a comparatively

large value (i.e., ρ = 0.9), because the semantic-unrelated

nodes also contribute to the model pre-training.

• τ plays an important role in contrastive learning, which

can adjust the uniformity of contrastive samples [56].

Both a too-small (i.e., τ = 0.1) value and a too-large

(i.e., τ = 0.5) value of τ hurt the performance of SGCL.

In our experiment, we finally choose τ = 0.2, which is

not optimal in all datasets but is optimal on average.

E. Further Analysis (RQ4)

Furthermore, we investigate the impact of different encoder

architectures and label rates. Different encoder architectures

are conducted in unsupervised learning, and the effect of

different label rates is completed in semi-supervised learning.

Effect of Different Encoder Architectures. Here we aim

to examine the impact of different encoder architectures on

the performance of SGCL. We focus on four widely-used

graph neural networks: GCN [1], GraphSAGE [57], GAT [2],

and GIN [3]. We compare them in unsupervised experiments
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on four TU datasets: MUTAG, PROTEINS, DD, and IMDB-

BINARY, as shown in Figure .6. This histogram illustrates

that GIN slightly outperforms the other base models and the

robustness of our model to different encoder architectures.

MUTAG PROTEINS DD IMDB-B
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Figure 6. The accuracy (%) of SGCL with different encoder architectures on
unsupervised learning graph classification.

Effect of Different Label Rates. Here we further examine the

impact of labeled data numbers on the performance of SGCL

on graph classification. The results are shown in Table VI. The

baseline results are taken from the published papers, except

for the 1% label rate experiments of AutoGCL [24], which

we reproduce on our platform. We report two semi-supervised

tasks with 1% (i.e., NCI1(1%), COLLAB(1%)) and 10%
(i.e., NCI1(10%), COLLAB(10%)) label rate respectively. The

results show that our SGCL outperforms all the previous

baselines in the 1% label rate setting. For the 10% label rate

setting, SGCL performs comparably to the SOTA method Au-

toGCL [24], which proposes a joint training strategy focused

on improving the performance in semi-supervised learning.

TABLE VI
SEMI-SUPERVISED LEARNING ACCURACY (%) ON TU DATASETS.

Method NCI1(1%) COLLAB(1%) NCI1(10%) COLLAB(10%)

No pre-train 60.72± 0.45 57.46± 0.25 73.72± 0.24 73.71± 0.27
GAE 61.63± 0.84 63.20± 0.67 74.36± 0.24 75.09± 0.19
Infomax 62.72± 0.65 61.70± 0.77 74.86± 0.26 73.76± 0.29
GraphCL 62.55± 0.86 64.57± 1.15 74.63± 0.25 74.23± 0.21
JOAOv2 62.52± 1.16 64.51± 2.21 74.48± 0.27 75.30± 0.32
SimGRACE 64.21± 0.65 64.28± 0.98 74.60± 0.41 74.74± 0.28
AutoGCL 64.38± 0.85 65.37± 1.04 73.75± 2.25 77.16± 1.48

SGCL (Ours) 64.99± 0.72 65.62± 0.64 75.64± 0.68 75.82± 0.11

F. Visualization (RQ5)

In this subsection, we visualize the contrastive sample

generated from our SGCL and RGCl in MNIST-Superpixel

dataset. As shown in Figure 7, the nodes’ colors reflect each

node’s augmentation probability in RGCL views and reflect

the Lipschitz constant in our SGCL. The darker color indicates

a higher probability of a node being preserved during the

graph augmentation. RGCL and our SGCL methods both

capture semantic nodes located at the center of the graph and

assign them the highest probability. However, compared to the

node probability distribution in RGCL, the distribution of the

Lipschitz constant is much closer to the original views. This

suggests that our SGCL can accurately identify the semantic-

related nodes and preserve more discriminative semantics.

(a) Original Views

(b) RGCL Views

(c) SGCL Views

Figure 7. Contrastive sample visualization of 1, 2, 6 on the MNIST-Superpixel
dataset. In RGCL, redness reflects the probability of each node. In our SGCL,
redness reflects the Lipschitz constant of each node.

VII. CONCLUSION

In this paper, we propose a novel Semantic-aware Graph

Contrastive Learning (SGCL) approach to preserve semantic

information in contrastive samples, which improves the per-

formance of graph contrastive learning on downstream tasks.

SGCL first provides an effective generator to compute the

Lipschitz constants of each node. By combining Lipschitz con-

stants, our proposed Lipschitz graph augmentation can iden-

tify semantic-related structures while augmenting semantic-

unrelated nodes with smaller Lipschitz constants to generate

high-quality samples for semantic-aware contrastive learning.

Furthermore, we conduct extensive experiments to demon-

strate the effectiveness of SGCL. Our experimental results on

unsupervised and transfer learning graph classification tasks

demonstrate SGCL outperforms state-of-the-art methods.
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