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Abstract—Image synthesis adds synthetic objects to existing
images and makes them visually hard to distinguish. In order
to make the synthetic objects more realistic, shadows are also
required to be generated in the synthesis process. However, most
existing shadow synthetic methods work poorly when there is no
fixed lighting source or there are multiple objects that already
existed in the original image. Hence in this paper, we propose
a novel method called MultiShadow, which generates realistic
shadows for virtual objects with better recognition of illumination
information based on the existing objects in the original image.
The experiments on benchmark datasets show that MultiShadow
outperforms the state-of-the-art.

Index Terms—image synthesis, shadow generation, adversarial
attacks, fraud detection

I. INTRODUCTION

Virtual objects are often added into an existing image in

order to enhance the richness of content or restore the scene

in virtual and augmented reality, as shown in Figure 1. In such

application scenario, the synthesized image should contain few

synthetic traces and emphasize the overall visual effects.

Previous image synthesis methods often focus on synthe-

sizing the virtual object itself, such like adjusting the colour

consistency, spatial layout and size of the virtual object.

However, these methods only deal with the virtual object itself

rather than blending in the background. In iconology, light

and shadow can greatly enhance the three-dimensional sense

of a picture and the corresponding objects [1]–[4]. Hence,

shadow synthesis is an essential component of augmented

reality, which aims to generate shadows for the virtual objects

that have been added into the original image. Shadow synthesis

is a novel research area and has been proven successful in

increasing the realism of virtual objects [5].

Shadow synthesis is a challenging task majored because

of the lack of information. 1) It is difficult to detect the

direction of light source in the original image according to

the perspective principles and geometric distortions of space.

Without the light source, it is impossible to generate shadows

in compliant with the other objects that already existed in

the image. 2) Even if the light source is found, the three-

dimensional information of the virtual object cannot be in-

ferred through its two-dimensional projection. According to

our observation, the lack of three-dimensional model of the

virtual object is quite common in practise. 3) It is difficult

to generate shadows for an added object in the image with

Fig. 1. An example of shadow synthesis using MultiShadow for the white
pot as shown above in the image. The resulting shadow is realistic and in
compliant with the direction of light source according to the other two objects.

multiple existing objects. Due to the variance in shape and

position of existing objects, it is more difficult to decide

the direction of light, and further influence the quality of

generated shadows for added objects. In conclusion, a fined-

grained shadow synthesis method should have the abilities of

detecting the light source and generating shadows from two-

dimensional projections [6], and be compatible with multiple

existing objects.

In this paper, we propose a novel shadow synthesis method

called MultiShadow as shown in Figure 1, where the gener-

ated shadows are well adapted into the original image. The

contributions of this paper lie on the following aspects:

1) We propose a novel method called MultiShadow, which

synthesizes shadows for the virtual objects that are added

into an augmented image with multiple real objects that

already exist.

2) We design an efficient two-stage model combining CNN

and GAN together to detect and generate shadows in one

network.

3) We have conducted thorough experiments on benchmark

datasets, and the results show that MultiShadow outper-

forms the state-of-the-art.

II. RELATED WORK

A. Shadow Detection

In order to generate shadows for virtual objects, it is

necessary to recognize the existing shadows first. There are

three major ways of shadow detection: 1) detect through

environmental information with constant light. For instance,

shadows could be segmented using spectral and geometric
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features in the scene [7], and the detected regions are verified

as shadows based on colour variance and geometric properties.

2) Detect by extracting information from the edges of objects

in the image, such like in outdoor consumer photographs [8],

where the edges are filtered by a trained classifier. However,

when the light source is far from the objects, shadows become

blurry and unclear, thus the shaded areas are disturbed. In

these scenarios, the above two methods are limited. Hence,

a better way is 3) detecting by directly extracting features

from shadows through deep neural networks. For example,

using CNN (Convolutional Neural Networks) to capture the

local structural information of shadows [9], [10], and using

Patch-CNN [11] through a fully connected network to predict

the probability of shadow edges [12]. In this paper, shadow

detection methods are preliminaries that cannot be directly

used to synthesize shadows.

B. Shadow Generation

Generating realistic shadows depends on whether the light-

ing information are provided. If illumination, reflectance,

geometry and material properties [13] are already provided,

it is trivial to generate shadows for virtual objects, and the

rendering of geometric texture [14], object structure [15] and

surface colour [16] is more important. However, in real life,

there are often other objects with existing shadows in the

background of an image, and the added virtual object must

follow the existing lighting information. Hence, it is necessary

to predict the illumination, reflectance, geometry, and material

properties of the environment and the virtual object. It is

possible to actively collect such information [17], [18] but

time-consuming and labour-intensive. More advanced methods

include: 1) Mask-ShadowGAN [19], which uses a mask to

guide the generation of shadows and increase the number

of object-shadow pairs in the dataset. However, it cannot

handle complex backgrounds or specify target virtual objects.

2) ShadowGAN [20], which is based on both local and global

adversarial discriminators to generate shadows. However, its

lighting scenes are synthesized using a single point of light

and it does not consider lighting conditions in real environ-

ments. 3) ARShadowGAN [5], which introduces an attention

module to recognize real objects and corresponding shadows

in the background of original image. Through learning the

characteristics of real objects and corresponding shadows, it

generates more realistic shadows for virtual objects. However,

the performance of ARShadowGAN is limited on images with

complex backgrounds.

III. MULTISHADOW

MultiShadow is a GAN-based model inspired by ARShad-

owGAN [5] and LISA [21], and it consists of a generator

which generates shadows of virtual objects and a discriminator

which verifies the quality of generated shadows. MultiShadow

generates shadows without explicit lighting information and

works for multiple objects simultaneously, which is different

from previous works.

(a) Original image x (b) Ground truth image y

Fig. 2. An example of desired training image, where 1) there are multiple
objects b1, b2 that already exist in the original image x; 2) shadows s1 and
s2 are given for b1 and b2 respectively; 3) a virtual object b is inserted into
the original image; and 4) the shadow s of the virtual object b is manually
rendered, resulting ground truth image y.

A. Dataset

In this paper, the dataset for shadow generation model has

the following requirements:

1) There multiple objects that already exist in the original

image;

2) An object-shadow pair is given for each real object;

3) A virtual object is inserted to the original image; and

4) The shadow of the virtual object is manually rendered

as ground truth.

An example is shown in Figure 2, where b is a 3D virtual

object rendered by OpenGL, and the corresponding shadow of

s should be synthesized based on the intensity and direction
of light in the original image.

B. Framework

The design of MultiShadow is shown in Figure 3. Multi-

Shadow is composed of a generator and a discriminator based

on Generative Adversarial Network (GAN) [22]. The generator

is responsible of generating shadows for the virtual objects,

and the discriminator is responsible of verifying the quality of

generated shadows. Through constant confrontation between

the generator and the discriminator, synthesized shadows be-

come more and more realistic during training.

The input of MultiShadow consists of the original image

x and its corresponding object masks m. First, an attention
encoder is introduced to fetch the objects and corresponding

shadows that already exist in the background through the

object decoder and shadow decoder, respectively. Then, the

generator generates refined shadows ŝ for the virtual objects
in x. The above shadows are synthesized to the original image
x resulting ŷ, and ŷ is verified by the discriminator with
confidence p. At last, p composes the loss of MultiShadow,
and feeds back to the generator to improve the quality of ŷ
constantly.

Next, we will introduce the details of shadow generator,

shadow discriminator, and loss function in Section III-C, III-D,

and III-E, respectively.

C. Shadow Generator

Before generating the shadow s for the virtual object b
in the original image x, an attention model is applied to
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Fig. 4. The architecture of DenseNet. Each layer acquires features through
non-linear transformations T such as BN, ReLU or Convolution. The features
adopted in each layer is not only related to its adjacent layer, but also all the
previous layers [23].

find those objects that already exist in the background. The

attention model represents each region of the image as a

matrix with elements ranging from 0 to 1, and features are

extracted through a residual network. Then, these objects

and their corresponding shadows are extracted from x. More
specifically, two attention maps are obtained: 1) the attention

map of the object occluders; and 2) the attention map of the

corresponding shadows.

The shadow generator is composed of a U-Net [24] full

convolutional network and a refinement network. The U-Net

aims to generate rough shadows of virtual objects. More

specifically in the U-Net, an image encoder is introduced to

encode existing objects and their shadows, and a vShadow

decoder is designed to decode a rough shadow s through the
mask m of the virtual object b. The refinement network aims

to optimize s and tries to find a refined shadow ŝ for the
object b. In this paper, we use DenseNet [23] as the refinement
network, as shown in Figure 4. DenseNet introduces feature

reuse mechanism to make the results more accurate.

D. Shadow Discriminator

The discriminator determines whether the generated shad-

ows are realistic and feeds back the loss to the generator.

In this paper, the discriminator of MultiShadow consists of

two parts: 1) Continuous convolution with normalization and

LeakReLU operations to generate feature maps for evaluation;

and 2) a set of Region Proposal Networks (RPN) [25] to

find areas with high probabilities to be objects and shadows

in ŷ, and evaluated through RoI Align [26]. The loss of
MultiShadow leverages the outputs of the above two parts

by matching shadows and objects one by one. Failing the

matching of shadow and object will result in a higher loss,

and further enhance the performance of generator through

feedbacks of average full-graph feature maps.

In this paper, we use two RPNs for the second part of the

discriminator: 1) Instance RPN; and 2) Association RPN, as

shown in Figure 5. RRN aims to identify the bounding boxes

with targets. More specifically, Instance PRN identifies the

object and shadow areas separately, whereas Association RPN

identifies the whole area containing both the object and its

corresponding shadow [21].

E. Loss Function

The loss of MultiShadow as shown in Figure 3 is denoted

as LG. In this paper, we combine 1) pixel-wise loss L1; 2)
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Predicted shadow-object associations

Fig. 5. RPN first recognises objects and shadows, then evaluate all the
combinations of them to pick the associations with highest probabilities
through RoI Align.

perceptual loss L2; 3) cross entropy loss L3; and 4) GAN loss

L4 together to calculate LG. More specifically,

LG = β1L1 + β2L2 + β3L3 + β4L4 (1)

where β1, β2, β3 and β4 are hyper-parameters for L1, L1, L3

and L4, respectively.

L1 is the pixel-wise loss that compares the synthetic image

with its corresponding ground truth y. In this paper, L1

compares both the rough image y and the refined image ŷ
with y, where y and ŷ are synthetic by combining the original
image x with the rough shadow s and the refined shadow ŝ.
Formally,

y = x+ s (2)

ŷ = x+ ŝ (3)

and L1 is defined as:

L1 =‖ y − y ‖22 + ‖ y − ŷ ‖22 (4)

L2 is the perceptual loss which refers to the perceptual

difference between the synthetic image and its corresponding

ground truth. In this paper, we use a pre-trained VGG16 [27]

model on ImageNet [28] to extract image features (denoted

as Vy), and compare the mean squared errors with both the

rough image y and the refined image ŷ. Formally,

L2 = MSE(Vy, Vy) +MSE(Vy, Vŷ) (5)

L3 is cross entropy loss which evaluates the probability of

successful predictions on object-shadow match as explained

in Section III-D. p̂ denotes the confidence of object-shadow
match in the synthetic image, and p denotes the confidence of
object-shadow match in the ground truth. Formally,

L3 = −[p log p̂+ (1− p) log(1− p̂)] (6)

(a) Original image with virtual objects
inserted but no shadows

(b) Masks of virtual objects

(c) Masks of real objects (d) Shadows of real objects

(e) Ground truth

Fig. 6. Envisioned data pairs of the ARShadowGAN dataset.

L4 is the standard GAN loss that reflects the competition be-

tween generator and discriminator in MultiShadow. Formally,

L4 = log(D(x,m, y)) + log(1−D(x,m, ŷ)) (7)

where m is the mask of virtual object, and D(·) is the
probability of identifying whether the image is real or fake

(i.e., synthetic).

IV. EXPERIMENT

A. Dataset

Existing shadow datasets often have limits such as 1)

the lack of corresponding object-shadow pairs [12], and 2)

background only contains single object [29], [30]. According

to the requirements of dataset as illustrated in Section III-A,

object-shadow pairs and multiple background objects must

be provided. Hence, in this paper, we use the dataset of

ARShadowGAN [5] as the experimental dataset, which fulfils

the above requirements. The ARShadowGAN dataset consists

of background images taken by camera with multiple existing

objects. The resolution of each image is 640×480 pixels.
There are 13 different 3D virtual objects, where 4 of them

are selected from a 3D scanning repository and 9 of them

are selected from ShapeNet [31]. The envisioned data pairs
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Fig. 7. Visual comparison of ARShadowGAN and MultiShadow on single-
object backgrounds. Images from left to right are: ARShadowGAN, Multi-
Shadow, and ground truth.

are shown in Figure 6, where each set of data pairs contains

5 images: 1) manually rendered original image with virtual

objects inserted but no shadows; 2) masks of virtual objects;

3) masks of existing real objects; 4) shadows of existing real

objects; and 5) manually rendered ground truth.

B. Evaluation Setup

We use PyTorch to implement MultiShadow. In the exper-

iments, we set training epoch to 200, and use 5 up-sampling

layers for the U-Net in the shadow generator. The hyper-

parameters in the loss function of Equation (1) are set to:

β1 = 10, β2 = 1, β3 = 0.011, and β4 = 0.905. The choice of
these hyper-parameters are made through multiple experiments

with best performance.

In this paper, we use the following three most commonly

used evaluation metrics to evaluate the quality of synthesized

image: 1) Root Mean Square Error (RMSE); 2) Structural

Similarity Index (SSIM); and 3) Peak Signal-to-Noise Ratio

(PSNR). For RMSE, the performance is better if the value is

smaller. On the contrary, for SSIM and PSNR, the performance

is better if the value is larger.

Fig. 8. Visual comparison of ARShadowGAN and MultiShadow on multi-
object backgrounds. Images from left to right are: ARShadowGAN, Multi-
Shadow and ground truth.

C. Experiment Result

As far as we know, ARShadowGAN is currently the state-

of-the-art, and it outperforms all existing shadow generation

algorithms [5]. Hence, in this paper, we only compare the

performance of MultiShadow against ARShadowGAN with

same training epochs. The overall performance and the per-

formance only on multiple objects are shown in Table I.

For the overall performance, MultiShadow is very close to

ARShadowGAN on SSIM, and better on RMSE and PSNR, as

shown in the left part of Table I. For the performance only on

multiple objects, MultiShadow outperforms ARShadowGAN

on all metrics. Hence, it proves that MultiShadow is clearly

better for generating shadows on those images with multiple

objects that already exist in the original image.

To clearly show the visual effects of MultiShadow, some

examples of the synthesized images are shown in Figure 7

and 8 for single-object and multi-object backgrounds, respec-

tively. According to Figure 7, MultiShadow performs similarly

(and sometimes slightly better) to ARShadowGAN. However,

accoriding to Figure 8, when there are multiple objects exist

in the background, MultiShadow performs clearly better than

ARShadowGAN.
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TABLE I
COMPARISON OF ARSHADOWGAN AND MULTISHADOW ON OVERALL & MULTI-OBJECT PERFORMANCE

Overall Multi-Object Only
RMSE SSIM PSNR RMSE SSIM PSNR

ARShadowGAN 7.53 0.9767 31.5 7.60 0.973 31.4
MultiShadow 7.38 0.9757 31.7 6.99 0.974 32.2

V. CONCLUSION

In this paper, we propose a novel shadow synthesis method

called MultiShadow, which generates realistic shadows for

virtual objects that are added to an existing image. The

synthesized shadows are consistent with the lighting direction

of the original image. MultiShadow works for images with

complex backgrounds, especially when there are multiple

objects that already exist in the original image. We have tested

MultiShadow on benchmark datasets, and results show that

MultiShadow outperforms the state-of-the-art.
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