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Abstract. Accurate measurement of fetal head circumference (HC) in ultrasound 
images remains essential yet challenging for obstetric assessment, primarily due 
to anatomical variations across gestational stages and inherent imaging artifacts. 
In response to these limitations, we introduce YOSAM, a novel framework for 
fetal HC measurement that synergistically combines YOLOv11-based detection 
with our enhanced MedSAM-AD model. The MedSAM-AD integrates an Adapter 
layer for domain-specific feature adaptation and a Dimensional Reciprocal Atten-
tion Mixing Transformer (D-RAMiT) block for a joint spatial-channel atten-
tion mechanism into the MedSAM architecture. Within our cascaded framework, 
YOLOv11 first generates bounding boxes to localize the fetal head, serving as spa-
tial prompts for MedSAM-AD to perform precise segmentation. The segmented 
fetal head is then processed with Canny edge detection and elliptical fitting to 
compute HC. Experimental results show that our approach achieves outstanding 
performance among standard biometric metrics of the HC18 dataset, attaining a 
Dice Similarity Coefficient (DSC) of 98.06 ± 1.06%, a Difference (DF) of 0.13 
± 2.47 mm, an Absolute Difference (AD) of 1.76 ± 1.74 mm, and a Hausdorff 
Distance (HD) of 1.18 ± 0.71 mm. With HD as the principal criterion for bound-
ary delineation, our method achieves state-of-the-art performance in fetal head 
boundary delineation. 

Keywords: Medical image segmentation · Fetal head circumference 
measurement · Deep learning 

1 Introduction 

Throughout pregnancy, ultrasound imaging plays a central role in fetal evaluation by 
detecting significant anomalies, monitoring growth trajectories, and assessing placental 
health, thereby supporting informed clinical decisions and interventions [7]. Measuring 
fetal head circumference (HC) is an essential anthropometric parameter in evaluating 
fetal health. By measuring fetal HC, doctors can predict gestational age and due date, 
and assess fetal development and mode of delivery [22]. The normal range of fetal HC 
reflects the brain development [16] and, therefore, plays an integral role in medical 
diagnosis.
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As shown in Fig. 1(a), existing methods for fetal HC measurement rely on an 
elliptical approximation of the head contour, where the contour’s perimeter is calcu-
lated to estimate the HC value. Consequently, accurate contour detection is critical 
for HC estimation. Traditional manual measurement necessitates clinician expertise, 
exhibits time-consuming characteristics, and demonstrates precision constraints. Sig-
nificant inter-observer variability exists among clinicians, compounded by a critical 
shortage of certified sonographers specialized in fetal ultrasound [5]. However, as illus-
trated in Fig. 1, fetal ultrasound images exhibit several inherent limitations. For instance, 
amniotic fluid and uterine wall structures mimic the texture and grayscale characteristics 
of the fetal head (see Fig. 1(b)); the fetal head boundaries are unclear (see Fig. 1(c)); 
and other elliptical-shaped tissues resemble the fetal head in morphology (see Fig. 1(d)). 
These artifacts result in incomplete contour detection or misidentification of non-cranial 
regions as the fetal head, posing significant challenges to HC measurement. 

Fig. 1. Fetal ultrasound analysis: (a) Standard head measurement; (b) Boundary ambiguity from 
adjacent structures; (c) Incomplete edge continuity; (d) Tissue artifacts mimicking head contours. 

Aiming to tackle these issues, we introduce YOSAM for automated fetal HC mea-
surement in ultrasound images. YOLOv11 [11] is implemented for precise localization 
of the fetal head, thereby boosting segmentation performance. In addition, we integrate 
an Adapter layer [2] and a Dimensional Reciprocal Attention Mixing Transformer (D-
RAMiT) [3] block into the image encoder of MedSAM [18], named MedSAM-AD. The 
use of the Adapter layer allows the adaptation of MedSAM for multimodality to the 
features of ultrasound images through lightweight parameters. At the same time, the 
D-RAMiT block captures local edges and global morphology in parallel through spatial 
and channel dual-branch attention. The synergy between the two significantly bridges 
the domain gap between MedSAM’s pretraining data (CT/MRI) and fetal ultrasound-
specific features. It effectively improves the segmentation ability of the MedSAM to 
ultrasound images. 

The main contributions are summarized as follows: 

• We use YOLOv11 to detect the fetal head and generate bounding box prompts, 
enhancing segmentation robustness against maternal tissue interference. 

• We integrate an Adapter layer and a D-RAMiT block into MedSAM, which effectively 
improves the segmentation ability of ultrasound images. 

• We apply YOSAM, a cascaded detection-segmentation framework, to the HC18 
dataset and achieve a significant enhancement in HC measurement precision.
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2 Related Work 

In early research, methods such as Hough transform and machine learning have been 
employed to measure fetal HC. Lu et al. [17] presented a fully automatic fetal head 
detection and measurement method using the random forest classifier and Hough trans-
form, enhancing robustness and accuracy in contour detection despite noise, artifacts, 
and poorly defined edges. A method combining random forest classifiers with fast ellipse 
fitting for HC measurement was proposed by Li et al. [13], enhancing accuracy and effi-
ciency through the integration of prior knowledge and phase symmetry detection. How-
ever, these approaches face limitations in processing low-contrast images and complex 
anatomical structures. 

In recent years, deep learning has driven rapid progress in marrying medical imaging 
with artificial intelligence. A notable development is the emergence of convolutional neu-
ral networks (CNNs), which enable automatic feature extraction from complex medical 
datasets, achieving exceptional performance in segmentation tasks. A regression CNN-
based framework was proposed to directly estimate fetal HC from ultrasound images, 
achieving a mean absolute error of 4.52 mm without requiring manual segmentation or 
ellipse fitting [24]. This approach also highlights the potential for future improvements 
through attention mechanisms or multi-task learning. Li et al. [14] developed SAPNet, 
a dual-branch network that integrates segmentation and regression to simultaneously 
measure HC, biparietal diameter, and occipitofrontal diameter. Enhancing V-Net with 
attention mechanisms and deep supervision, DAG V-Net boosts the accuracy of delin-
eating the fetal cranium and strengthens HC measurement stability [23]. Wang et al. [22] 
used GAC Net, a U-Net variant augmented with graph convolutions and SUO attention, 
achieving 98.21 ± 1.16% in Dice Similarity Coefficient (DSC) and 1.75 ± 1.71 mm in 
Absolute Difference (AD) on the HC18 dataset. In summary, advanced deep learning 
techniques have markedly elevated both the segmentation accuracy of the fetal head and 
the precision of HC estimation. 

Benefiting from the remarkable success of Vision Transformer (ViT) [4] in image 
tasks, transformer-based architectures are increasingly adopted in medical image anal-
ysis. The Segment Anything Model (SAM) [12], built upon a ViT backbone, is a pio-
neering promptable framework that demonstrated exceptional zero-shot generalization 
capabilities across panoptic segmentation tasks through its advanced encoder-decoder 
design. Huo et al. [8] constructed DrSAM as an extension of SAM, retaining its pre-
trained weights while augmenting it with a U-shaped network and medical output tokens, 
offering a practical and adaptable tool for automated medical image analysis. MedSAM 
[18], an adaptation tailored for medical images, extends SAM’s paradigm to achieve 
state-of-the-art performance in multi-organ segmentation. However, MedSAM performs 
suboptimally in fetal HC measurement tasks compared to specialized models. This lim-
itation stems from its generalist design, which emphasizes multi-class segmentation 
robustness at the expense of domain-specific geometric precision. To address this limi-
tation, we introduce YOSAM, a cascaded detection-segmentation framework integrat-
ing YOLOv11 and MedSAM-AD, optimized explicitly for fetal HC measurement in 
ultrasound images.
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3 YOSAM  

The automated workflow depicted in Fig. 2 outlines our approach for segmenting the 
fetal head and estimating HC. Firstly, the ultrasound image is passed through the image 
encoder to extract features, ultimately represented as image embeddings. At the same 
time, the fetal head is localized via a bounding box detection using the YOLOv11. Sub-
sequently, the bounding box is encoded as positional prompts for the prompt encoder of 
MedSAM-AD, enabling targeted segmentation of the fetal head under positional guid-
ance. Finally, since the segmentation result does not present a standardized ellipse shape, 
we need to perform edge detection on the segmentation result and fit the ellipse using 
least squares to approximate the standard ellipse contour. Based on the ultrasound imag-
ing resolution, the HC metric is computed through pixel-to-millimeter conversion, with 
fetal head positioning derived from the centroid coordinates and major-axis orientation 
of the fitted ellipse. 

Fig. 2. Workflow of fetal head segmentation and HC measurement. 

3.1 YOLO V11 

YOLO (You Only Look Once) [11] is a groundbreaking real-time object detection frame-
work that unifies region proposal and classification into a single neural network pass, 
enabling simultaneous prediction of bounding boxes and class probabilities during image 
processing. Building on this foundation, YOLOv11 introduces lightweight yet power-
ful architectural innovations to enhance efficiency and accuracy, enabling support for 
diverse tasks, including object detection, instance segmentation, and pose estimation 
[11]. In fetal HC measurement, YOLOv11 automates the detection of the fetal head and 
generates high-precision bounding box coordinates for MedSAM-AD, an interactive 
segmentation model requiring head localization data to produce segmentation masks. It 
can be found that bounding boxes deliver superior spatial contextualization for regions of 
interest, enhancing algorithmic precision in fetal head segmentation. By detecting fetal 
heads with high precision, YOLOv11 replaces manual annotation and feeds coordinates 
directly into MedSAM-AD’s prompt encoder to enable consistent, efficient segmentation 
without human intervention.
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3.2 MedSAM-AD 

The MedSAM-AD architecture builds upon MedSAM, which has demonstrated robust 
performance in medical image segmentation [18]. As depicted in Fig. 2, the MedSAM-
AD model comprises three primary modules: a prompt encoder, an image encoder, and 
a mask decoder. The role of the prompt encoder is to process user-specified bounding 
boxes into positional embeddings. The ViT-based image encoder extracts deep semantic 
features from medical images. Subsequently, the mask decoder receives both positional 
and image embeddings to generates segmentation results. Figure 3(a) illustrates how 
MedSAM-AD extends MedSAM by systematically integrating the Adapter layer and 
the D-RAMiT block within each transformer block of the image encoder. 

Fig. 3. (a) The architecture of the image encoder of MedSAM-AD. (b) Adapter layer architecture 
diagram. (c) D-RAMiT block architecture diagram. 

Adapter Layer. According to [2], the integration of the Adapter layer into the SAM 
has been shown to significantly improve its segmentation accuracy in medical imaging 
tasks. The architecture of the Adapter layer is shown in Fig. 3(b). In MedSAM-AD, 
we integrate this adaptation mechanism into the image encoder to enhance ultrasound-
specific feature representation. It implements feature adaptation for the image encoder 
along channel and spatial dimensions. For the channel dimension, the input feature map 
(C × H × W) is compressed to a size of C × 1 × 1 through global average pooling. These 
channel embeddings are passed through a linear layer to reduce their dimensionality to 
C 
4 ×1 × 1, then are reconstructed back to the original channel size by another linear layer. 
The channel weights are subsequently produced by a sigmoid activation layer. These 
weights undergo element-wise multiplication with the original input, and the product is 
propagated to the next network layer. For the spatial dimension, the input is spatially 
downsampled through a convolutional operation, after which the original resolution is 
recovered by transposing the convolution. To mitigate information loss, the Adapter
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layer incorporates a residual connection by concatenating the initial input features with 
the processed output. 

D-RAMiT Block. We incorporate the D-RAMiT block [3] (see Fig.  3(c)) into MedSAM 
to capture local edge details and global morphological features in ultrasound images. 
The D-RAMiT block processes input features through QKV projection, dynamically 
partitioned into two multi-head groups. Then, it operates through two parallel pathways: 
spatial self-attention (SPSA) and channel self-attention (CHSA), which jointly model 
local structural details and global channel-wise correlations. The parallel branches uti-
lize distinct numbers of multi-head Lsp and Lch to compute reciprocal attention weights. 
Specifically, SPSA leverages its attention heads to capture localized spatial relationships 
by incorporating embedded relative positional encodings, whereas CHSA employs the 
remaining heads to calculate cross-channel dependencies, thereby facilitating interac-
tions between spatially distant yet semantically related patterns. A reciprocal modulation 
mechanism bridges consecutive blocks, whereby the value matrices of SPSA and CHSA 
undergo element-wise multiplication with spatially averaged features derived from the 
preceding CHSA and SPSA outputs, respectively. Following feature concatenation, the 
combined outputs are processed by MobiVari [3], which effectively mixes local and 
global attention. Output is generated by first applying LayerNorm, then feeding the 
result through a feed-forward network, and finally applying a second LayerNorm, each 
normalization step followed by a residual connection. 

4 Experiments and Results 

4.1 Dataset and Pre-Processing 

HC18 dataset includes 1334 standardized plane ultrasound scans acquired from 551 
normotrophic fetuses during routine prenatal examinations [6]. A total of 999 training 
images, each accompanied by manually delineated HC contours provided by specialists, 
are allocated to the training set, while 335 images are assigned to the testing set. This 
dataset encompasses ultrasound images from different trimesters of pregnancy. Specifi-
cally, the training set includes 165 images from the first trimester, 693 from the second 
trimester, and 141 from the third trimester. Correspondingly, the testing set comprises 
55, 233, and 47 images from the first, second, and third trimesters, respectively. Each 2D 
ultrasound image measures 800 × 540 pixels, with spatial resolution varying between 
0.052 and 0.326 mm per pixel. 

To address the limited training data (n = 999) in the HC18 dataset and mitigate the 
risks of overfitting, we implemented a geometric augmentation protocol. Each ultra-
sound image underwent: 1) Random rotation simulates fetal head positional variance. 2) 
Horizontal flipping emulates left/right fetal presentation. 3) Vertical flipping accounting 
for probe orientation differences. This generated 20 augmented variants per original 
scan, expanding the training set to 19,980 images. Crucially, the testing set remained 
unaugmented to preserve evaluation integrity. The augmentation strategy alleviates data 
scarcity and enhances model robustness to anatomical presentation variability. To meet 
the model’s input specifications, the images were resized to 1024 × 1024 pixels using 
bilinear interpolation.
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4.2 Evaluation Metrics 

Following the HC18 challenge evaluation criteria, segmentation performance was eval-
uated using the Dice Similarity Coefficient (DSC), HC Difference (DF), HC Absolute 
Difference (AD), and HC Hausdorff Distance (HD). 

DSC quantifies the similarity between the segmentation result and the ground truth 
(GT), calculated as follows: 

DSC = 
2|A ∩ B| 
|A| + |B| (1) 

where A represents the segmentation result, and B denotes the GT. DSC is mathemati-
cally bounded within the closed interval [0,1], with values closer to 1 reflecting higher 
similarity between the segmentation and the GT. 

DF reflects systematic measurement bias, and AD assesses the absolute error in HC 
measurements, calculated as follows: 

DF = Hpred − Hgt (2) 

AD = |Hpred − Hgt | (3) 

where Hpred is the algorithm’s predicted HC and Hgt is the true value. DF’s positive 
and negative values indicate overestimation or underestimation trends, respectively. The 
values of AD directly reflect clinical usability, with lower values indicating greater 
measurement precision. 

Fig. 4. Schematic illustration of Hausdorff Distance between point sets A and B. 

HD quantifies the maximum spatial deviation between the GT and the segmented 
contour, calculated as follows: 

HD(A, B) = max
(
max 
a∈A 

min 
b∈B 

d(a, b), max 
b∈B 

min 
a∈A 

d (b, a)
)

(4) 

where A represents the segmentation contour, and B denotes the GT. As illustrated in 
Fig. 4, d (a, b) denotes the Euclidean distance between points a and b. A lower HD  
indicates a closer alignment of the segmented contour with the GT, reflecting minimal 
maximum local deviation.
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4.3 Implementation Details 

We initialized YOLOv11 with the official pre-trained parameters, subsequently fine-
tuning the network on the HC18 dataset. MedSAM-AD was developed using PyTorch, 
with training on a single NVIDIA Quadro GV100 (32GB) GPU. The model adopted the 
official MedSAM pre-trained weights for initialization. During training, the training set 
was randomly divided into training and validation subsets with an 8:2 ratio. The Dice 
score was employed to assess segmentation performance on the validation set after each 
training epoch. For parameter optimization, the loss function consisted of an unweighted 
combination of dice loss and cross-entropy loss, with parameters updated via AdamW 
optimizer (β1 = 0.9, β2 = 0.999). The learning rate was set to 1e-4 with a weight decay 
of 0.01. Due to GPU memory limitations, we set the batch size to 2 and trained the model 
for 20 epochs, with the entire training process taking 35 h. 

4.4 Experimental Results 

The segmentation accuracy was quantified on the HC18 testing set according to the crite-
ria defined in Sect. 4.2, specifically: DSC, DF, AD, and HD. Our method achieved a DSC 
of 98.06 ± 1.06%, a DF of 0.13 ± 2.47 mm, an AD of 1.76± 1.74 mm, and an HD of 1.18 
± 0.71 mm in the HC18 testing set. Our framework demonstrated distinct performance 
variations across trimesters. Notably, the model achieved high performance in fetal head 
segmentation during the second and third trimesters, with DSC values exceeding 98.15%, 
indicating excellent boundary delineation. Nevertheless, certain limitations persist; for 
example, the DSC was comparatively lower in the first trimester at 97.21%, and in the 
third trimester, the AD error reached 2.81 mm. Subsequent analysis revealed that the seg-
mentation challenges encountered in the first trimester are primarily attributable to the 
dynamic nature of fetal head development. During this period, the skull and brain tissue 
remain insufficiently differentiated, and the ultrasound image features appear relatively 
blurred, diminishing the algorithm’s sensitivity to boundary delineation. Conversely, the 
elevated AD error observed in the third trimester is associated with increased cranial 
calcification; the ultrasound images of the cranial region exhibit pronounced echo inten-
sities and acoustic shadowing, which can impede the algorithm’s capacity to accurately 
recognize actual boundaries. 

Across all four evaluation metrics for fetal HC measurement, YOSAM outperforms 
established medical image segmentation baselines: U-Net [21], nnU-Net [9], Attention-
UNet [15], V-Net [19], and MedSAM [18], with detailed comparative results documented 
in Table 1. Experimental results indicate that our framework outperforms these models 
across all four evaluation metrics in fetal HC measurement.
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Table 1. Comparison results of YOSAM with different models. 

Model DSC(%) DF(mm) AD(mm) HD(mm) 

U-Net [21] 96.96 ± 5.74 1.65 ± 6.65 2.96 ± 6.18 1.71 ± 2.48 
nnU-Net [9] 97.96 ± 1.13 1.29 ± 2.40 2.04 ± 1.80 1.21 ± 0.63 
Attention-UNet [15] 97.91 ± 1.18 -1.05 ± 2.59 1.97 ± 1.98 1.28 ± 0.81 
V-Net [19] 98.01 ± 1.06 1.16 ± 2.44 2.01 ± 1.80 1.21 ± 0.69 
MedSAM [18] 97.91 ± 1.13 0.99 ± 2.55 2.05 ± 1.81 1.26 ± 0.70 
YOSAM 98.06 ± 1.06 0.13 ± 2.47 1.76 ± 1.74 1.18 ± 0.71 

To rigorously evaluate the performance of our framework, we carried out compara-
tive analysis on the HC18 dataset against seven state-of-the-art fetal HC measurement 
algorithms from the literature [1, 6, 14, 16, 20, 22, 23]. As summarized in Table 2, our 
method ranks second in DSC, DF, and AD, closely trailing GCA-Net [22] in DSC/AD  
and DAG V-Net [23] in DF. Significantly, our framework establishes a new benchmark 
in terms of the HD metric with 1.18 ± 0.71 mm, surpassing all existing approaches. 
These results indicate that while GCA-Net marginally excels in region overlap accuracy 
and surface proximity, our method achieves clinically critical improvements in boundary 
delineation precision. It is worth noting that HD quantifies the greatest local discrepancy 
between the predicted boundary and the ground truth, making it crucial for detecting 
subtle yet critical edge inaccuracies that might be overlooked by overlap-based metrics 
like Intersection over Union (IoU) or DSC [10]. Even minor segmentation errors at the 
cranial boundary can lead to substantial HC miscalculations, potentially influencing clin-
ical decisions. Our method is optimized to minimize extreme boundary errors, ensuring 
robust and clinically reliable segmentation outcomes. 

Table 2. Comparison of different fetal HC measurement methods. 

Model DSC(%) DF(mm) AD(mm) HD(mm) 

Random forest [6] 97.10 ± 2.73 0.56 ± 4.21 2.83 ± 3.16 1.83 ± 1.60 
GVF-Net [20] 95.53 ± 3.98 −0.24 ± 3.23 2.18 ± 2.40 2.42 ± 1.93 
Mask-RCNN [1] 97.73 ± 1.32 1.49 ± 2.85 2.33 ± 2.21 1.39 ± 0.82 
SAF-Net [16] 98.05 ± 4.02 1.26 ± 2.95 N/A 1.27 ± 0.77 
SAPNet [14] 97.94 ± 1.34 0.59 ± 2.41 1.81 ± 1.69 1.22 ± 0.77 
DAG V-Net [23] 97.93 ± 1.25 0.09 ± 2.45 1.77 ± 1.69 1.29 ± 0.79 
GCA-Net [22] 98.21 ± 1.16 0.19 ± 2.32 1.75 ± 1.71 1.22 ± 0.71 
YOSAM 98.06 ± 1.06 0.13 ± 2.47 1.76 ± 1.74 1.18 ± 0.71



454 Z. Li et al.

4.5 Ablation Study 

The ablation analysis of integrated Adapter layer and D-RAMiT block in the MedSAM 
framework is presented in Table 3, while comparative visual predictions are provided 
in Fig. 5. The baseline MedSAM attained a DSC of 97.91 ± 1.13%, with three spatial 
accuracy metrics: 0.99 ± 2.55 mm in DF, 2.05 ± 1.81 mm in AD, and 1.26 ± 0.70 mm in 
HD. When evaluated independently, the standalone D-RAMiT block improved boundary 
precision, achieving a DSC of 97.96 ± 1.07% while reducing DF to 0.86 ± 2.45 mm and 
HD to 1.22 ± 0.68 mm, demonstrating its effectiveness in mitigating extreme contour 
deviations. In contrast, integrating the Adapter layer alone slightly increased DSC to 
97.99 ± 1.05% while significantly enhancing HC measurement robustness, as reflected 
in a reduced AD of 1.89 ± 1.72 mm. Most notably, the MedSAM-AD model, which 
incorporates the Adapter layer and D-RAMiT block, achieved the highest scores across 
all evaluation criteria. Specifically, it attained a DSC of 98.06 ± 1.06% and further 
reduced HC errors, with DF, AD, and HD values of 0.13 ± 2.47 mm, 1.76 ± 1.74 mm, 
and 1.18 ± 0.71 mm, respectively. Comparisons with configurations that utilize only a 
single module indicate that the combined approach yields superior improvements in all 
performance indicators. These results validate our hypothesis that cascaded detection-
segmentation frameworks with domain-adaptive attention mechanisms are essential for 
overcoming ultrasound-specific artifacts in fetal biometry. 

Table 3. Ablation study on the Adapter layer and D-RAMiT block in MedSAM. 

Model Adapter D-RAMiT DSC (%) DF (mm) AD (mm) HD (mm) 

MedSAM ! ! 97.91 ± 1.13 0.99 ± 2.55 2.05 ± 1.81 1.26 ± 0.70 
! " 97.96 ± 1.07 0.86 ± 2.45 1.95 ± 1.71 1.22 ± 0.68 
" ! 97.99 ± 1.05 0.69 ± 2.46 1.89 ± 1.72 1.23 ± 0.71 
" " 98.06 ± 1.06 0.13 ± 2.47 1.76 ± 1.74 1.18 ± 0.71
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Fig. 5. Visualization of fetal head segmentation with different module integration. 
5 Conclusion 

We propose YOSAM, a cascaded framework that integrates object detection and seg-
mentation for automated fetal HC measurement. Initially, YOLOv11 is employed to 
localize the fetal head region, after which MedSAM-AD performs precise segmenta-
tion. By incorporating an Adapter layer and a D-RAMiT block into the image encoder 
of MedSAM, the MedSAM-AD effectively adapts to the distinct features of ultrasound 
imaging, capturing both local edge details and global context, thereby leading to more 
precise fetal head segmentation. Comprehensive experimental evaluations reveal that our 
method delivers exceptional results across key metrics—including DSC, DF, AD, and 
HD—thereby establishing its potential as a robust solution for segmentation of the fetal 
head and as a reliable method for HC measurement. Future work will evaluate YOSAM 
on the other fetal ultrasound dataset, which includes multi-center and cross-device data, 
to further assess its generalizability. 
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