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Abstract—The popularity of location-acquisition devices has
led to a rapid increase in the amount of trajectory data
collected. The large volume of trajectory data causes the dif-
ficulties of storing and processing the data. Various trajectory
compression methods are therefore proposed to deal with these
problems. In this paper, we overview the existing road-network-
constrained trajectory compression methods and propose a
novel classification based on the features leveraged by them.
We also propose new methods that fill in the research blanks
indicated by the classification. We conduct a thorough com-
parison among the existing and new road-network-constrained
trajectory compression methods. The performances of the
methods are studied via various metrics on real-world dataset.
We make new discoveries regarding the performances and
the scalability of existing methods, and provide guidelines of
road-network-constrained trajectory compression for various
scenarios.

Keywords-Trajectory compression, road network, compres-
sion algorithm, moving object database, spatio-temporal data

I. INTRODUCTION

The popularity of location-acquisition devices has led to

the emergence of large amounts of trajectory data, which

are collected and valued by giant firms, governments and

research institutes because it is of great importance in

many application scenarios, such as urban sensing [1], path

recommendation [2], behavior analysis [3], etc. However, the

rapidly growing scale of trajectory data has caused the crises

of storage and communication, which raises the demand for

trajectory compression.

So far, many trajectory compression methods have been

proposed. They can be grouped into two categories. Methods

in the first category [4][5][6][7] focus on the compres-

sion of raw trajectory data. Typically, a raw trajectory is

usually represented by a series of location points and the

corresponding timestamps. Methods in the second category

[8][9][10][11] focus on an increasingly important kind of

trajectory data, namely trajectory data under road network

constraints. A typical road-network-constrained trajectory

records the movements of an object in a road network. It can

therefore be aligned with the road segments and vertices of

the road network for more precise and concise representation

using map-matching methods [12][13], as shown in Figure

1. This new form of representation plays an important role
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Figure 1: An Example of Map-matching

in trajectory-related applications. However, it introduces new

challenges for trajectory data compression as well. In this

paper, we focus on the comparison of the compression

methods regarding road-network-constrained trajectories.

Various kinds of methods have been proposed to address

the issue of road-network-constrained trajectory compres-

sion. MMTC [8] tries to replace some sub-paths of the map-

matched trajectory with shortest paths with least information

loss. Nonmaterial [9] aims at relating timestamps with

road segments and using less timestamps to estimate the

original ones within an error bound. Routing Algorithm [11]

compresses trajectory data by removing the road segments

that coincides some topological paths, such as shortest path

and straight path. PRESS [10] adopts the shortest path com-

pression same as that of Routing Algorithm, and develops

an encoding algorithm to further compress the trajectory. It

also modifies a line simplification algorithm for temporal

compression.

Despite all the current work, there are still some problems

to be solved. First, the experiments of existing work are not

comprehensive enough. Not all methods have been tested

against the same dataset under the same experimental setup.

Moreover, they use either a trajectory dataset too small, or

a road network too simple. The scalability of these methods

are therefore unknown. Generally, a thorough comparison

among the existing methods using a reasonably-sized dataset

and a complex road network is needed. Second, so far, there

is not a complete overview for road-network-constrained tra-

jectory compression techniques, which brings difficulties in

understanding the research topic completely. Existing meth-

ods leverage different features of road-network-constrained

trajectory data. A complete overview gives good classifica-

tion of the proposed work, and helps providing the future

research direction. New methods could also be proposed

to fill in the research blanks indicated by the classifica-

tion. Thus, a comprehensive overview is required for road-

network-constrained trajectory compression. Finally, there
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are opportunities for the existing work to borrow strong

points from each other to solve their existing problems. For

example, PRESS [10] proposes a novel encoding method as

their final step of compression, which could be leveraged

by other methods without encoding step to achieve better

performance.

In this paper, we make a complete overview for road-

network-constrained trajectory compression methods, and

conduct a thorough experimental comparison among them.

Specifically, we summarize the existing road-network-

constrained trajectory compression methods by a novel clas-

sification. We also propose several new algorithms based on

some novel observations from the classification. A thorough

experimental comparison will be conducted among existing

and new algorithms.

• We overview the existing road-network-constrained tra-

jectory compression methods, and we propose a novel

classification based on the features features leveraged

by the compression methods. We further design several

new spatial compression methods to fill the blanks

of unexplored features in the classification, which are

Most Frequent Follower Compression (MFFC), Most

Frequent Path Compression (MFPC) and Frequent Path

Compression (FPC).

• We conduct a thorough experimental comparison

among existing and new road-network-constrained tra-

jectory compression methods using a complex road net-

work and real-world reasonably-sized trajectory dataset.

We make new conclusions regarding the performances

and scalability of existing methods.

• We come to other important conclusions as well. We

give conclusions about the best combinations of meth-

ods under various performance metrics.

The rest of the paper is organized as follows. We make

an overview that classifies the existing and new algorithms

and introduce each of them in Section II. In Section III, we

present a thorough experimental comparison among these

algorithms. The conclusion is given in Section IV.

II. ALGORITHMS

We introduce the existing and new algorithms in this

section. We first present an overview of the methods, then

the specific algorithms will be introduced in detail. Beside

the existing methods, we also propose three new methods

for spatial compression, namely MFFC, MFPC, and FPC.

A. Road-Network-Constrained Trajectory Representation

To better understand the road-network-constrained com-

pression algorithms, we briefly describe the representation

of road-network-constrained trajectories.

A road network G is a directed graph G(V,E) that

denotes the topology of real-world roads, where E is the set

of road segments and V is the set of intersections. A path

P = {e1, e2...en} is a series of concatenated road segments.

When a trajectory T is under the constraints of a road

network G, the location points {p1, p2...pn} can be aligned

to the existing road segments {e1, e2...en} in the road

network G by map-matching algorithms [12][13][14]. T is

then transfered to Tmatched, which is the representation of

road-network-constrained represented trajectory. Tmatched

is represented by a path Pmatched indicating the spatial

information, and a series of modified timestamps t- = (d, t)
[10] indicating the temporal information. d is the traveled

distance (dtraveled) from the starting point (pstart) of the

path to the perpendicular projection (pproject) onto the

path of the original location point p. The representation of

timestamps can be different according to methods as long

as it has no information loss. This difference will not affect

the experimental comparison under the same setup.

B. Overview

As mentioned in Section II-A, road-network-constrained

trajectory data contains two components, i.e. spatial infor-

mation and temporal information. Obviously, a compres-

sion method can deal with spatial information, temporal

information or both of them to achieve the aim of com-

pression. Existing works [10][8][11] pay more attention on

the compression of spatial information, since it is where

the features of road network topology can be leveraged.

More specifically, the spatial information is the new form

brought by road networks and the major difference from

other trajectories. The compression of temporal information

is similar to time series compression and curve compres-

sion, where traditional text-based compression[15] and line

simplification [4][5] methods can be easily applied. So far,

only one dedicated new method [10] is proposed, which

is based on an existing line simplification algorithm. We

present overviews of both spatial and temporal compression

methods, and give a classification of them.

Existing spatial compression methods can be classified

from different aspects. In general, the methods can be

classified into two categories based on the characteristics of

road-network-constrained trajectory they leverage, namely

topology-based and frequency-based. Topology-based meth-

ods compress trajectories purely based on the topology of

road networks. In such case, no training or sensing on

input data is needed. Frequency-based methods, on the other

hand, capture the frequency information of historical data

or input data for compression. A pre-training on the input

or historical data is needed for such compression methods.

Specifically, the methods can also be classified by the actual

functioning logic of compression, which are simplification

and encoding. Simplification methods remove some sub-

paths from the original path, while encoding methods turn

the path to bit strings. Simplification methods can be further

classified into follower-based simplification and path-based

simplification. Follower simplification methods focus on

the relationship between one road segment and the next
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Table I: Classification of Spatial Compression Methods

Frequency-based Topology-based

Path Simplification
Lossy N/A MMTC

Lossless FPC, MFPC SPC

Follower Simplification Lossless MFFC Follow-PA

Encoding Lossless FSTC N/A

Table II: Classification of Temporal Compression Methods

General Methods Lossy
Linear Interpolation

Polygon Approximation

Dedicated New Methods Lossy BTC

concatenated one. They simplify the original data by re-

moving a series of concatenated followers with a certain

local relationship between each two road segments. Path

simplification methods aim at compressing a whole path

that follows a certain rule (e.g. frequent path and shortest

path). Such paths can be removed or replaced by shorter

symbols from original data to achieve compression. Beside

the above classifications, a method can also be classified by

whether it is lossy or lossless, which denotes whether the

decompression can fully recover the original data or not. It

is assumed[10] that the alignment of map-matching methods

are correct. Thus the lossy and lossless discussion does not

consider the information change during map-matching.

We classify the existing methods and new methods we

propose using the stated categories, as shown in Table I.

Existing methods fall into different elements of the clas-

sification table. Looking at where the existing works lie

in the classification, we can discover that some elements

are unexplored. For example, there is no frequency-based

path-based compression method yet. Thus, we propose new

algorithms to fill some of the blanks of the classifica-

tion, namely Most Frequent Follower Compression (MFFC),

Most Frequent Path Compression (MFPC), and Frequent

Path Compression (FPC). Unfortunately, we are not able to

find any existing method or appropriate new method that

falls into the element of ‘frequency-based & lossy & path-

simplification’ or ‘topology-based & encoding’, which will

be discussed as possible future works in Section IV.

In terms of temporal compression, there are three works

who deal with temporal data. Nonmaterial [9] and MMTC

[8] totally adopt general methods, such as linear inter-

polation and polygon approximation to either move the

timestamps to intersections or use less timestamps to esti-

mate multiple timestamps on the same road segment. These

methods achieve limited compression ratio. PRESS [10] is

the only existing work that proposes a dedicated temporal

compression method for road-network-constrained trajectory

compression, which is modified from a standard Before-

Opening-Window [16] line simplification algorithm. So far,

only lossy temporal compression methods are adopted. The

classification of temporal compression algorithms is shown
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Figure 2: Compression Details of Follow-PA

in Table II.

C. Spatial Compression Algorithms

This section describes the spatial compression algorithms.

We first give introduction to the existing algorithms, then we

move on to the new algorithms proposed in this paper.

1) Follow-PA: Following Path Routing Algorithm [11]

(Follow-PA) compresses spatial trajectories based on the as-

sumption that the moving objects tend to follow a path with

less deviation change when moving toward a destination.

Intuitively, this algorithm removes the ‘straight’ paths in the

original data. Consider a path P to be compressed, for each

road segment ei in P , the algorithm locates the set Sf of its

possible following road segments {ea, eb, ec, ...} in the road

network. Note that the next road segment ei+1 in P must

be one of {ea, eb, ec, ...}. The algorithm then calculates the

angular deviation αn from ei to {ea, eb, ec, ...} respectively,

as shown in Figure 2(a). If ei+1 has the least angular

deviation αmin from ei, ei+1 is denoted ‘compressible’.

Then the algorithm moves on to ei+1 and checks if ei+2

has the least deviation from ei+1. The process repeats until

the end of P . The road segments denoted ‘compressible’ are

removed from P . An example is shown in Figure 2(b). Since

e2 is the following road segment of e1 with least deviation,

and same between e3 and e2, the path P = {e1, e2, e3, e5} is

compressed to P ′ = {e1, e4}. Follow-PA also considers the

case of misalignment, which means even two road segments

ex and ey do not share an endpoint, if ey’s starting point

is within a small distance d from the ending point of ex,

ey is still considered a possible following path of ex. The

decompression of Follow-PA is trivial, simply retrieving

the series of following road segments with least deviation

between unconnected road segments in the compressed path

P ′. Follow-PA yields the complexity of O(|e|), where |e| is

the number of road segments in the input, since we encounter

each road segment once.

2) SPC: Shortest Path Compression [11][10] (SPC) lever-

ages the shortest path information of the road network

to compress the spatial trajectory, under the assumption
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Figure 3: Compression Details of Shortest Path Compression

that moving objects tend to follow shortest paths to reach

their destinations. Generally, it removes a sub-path from the

original path if it matches the shortest path with the same

starting and ending points. It is assumed that the all-pair

shortest path table is given. SPC anchors at the first road

segment of an input path, and checks if the sub-path between

the first and third road segment matches the corresponding

shortest path. The examined sub-path is enlarged for one

road segment for every positive feedback. SPC will remove

the sub-path when a one-road-larger sub-path no longer

matches the corresponding shortest path, and anchor at the

road segment after the sub-path. The process repeats until

the end of the input path. As shown in Figure 3, a path

P = {e1, e2, e3, e4, e5, e6} (Figure 3(a)) is compressed to

P ′ = {e1, e4, e6} (Figure 3(b)), since {e2, e3} matches the

shortest path between e1 and e4, while {e2, e3, e4} no longer

matches the shortest path between e1 and e5. The same

goes between e4 and e6. The decompression of SPC is

simply recovering shortest paths between unconnected road

segments in the compressed path. SPC yields a complexity

of O(|e|), where |e| is the size of input paths. (Shortest

paths can also be computed on-demand, however, this brings

the worst-case complexity of O(|e||E| log |V |), where |V |
and |E| is the number of intersections and road segments

in the road networks. This complexity is far worse than the

shortest path version, especially in the complex road network

of Beijing. Thus, we choose the shortest path version for

comparison.)

3) MMTC: Map-matched Trajectory Compression [8]

(MMTC) is a lossy compression algorithm that replaces

certain sub-paths in the original path by point-to-point

shortest paths. It assumes the all-pair shortest path table

is given. MMTC uses an curve difference computation

equation called MDL [8] to decide whether a sub-path

should be replaced by the corresponding shortest path. The

process of MMTC is as follows. The algorithm first anchors

at the starting intersection of v1s of e1 of the original path

P = {e1, e2, e3...en}. For every next intersection, MMTC

computes the MDL value according the sub-path formed

by the two intersections and the corresponding point-to-
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Figure 4: Most Frequent Follower Generation

point shortest path. The intersection vie with least MDL

value is chosen, and the sub-path between v1s and vie is

then replaced by the corresponding shortest path. After that,

MMTC anchors at vie and repeat the process. MMTC is a

lossy compression algorithm with no decompression step.

MMTC runs in O(|e|2 log (|e|)).
4) FSTC: As an encoding algorithm, Frequent Sub-

trajectory Compression [10] (FSTC) transfers original paths

to Huffman codes. Generally, FSTC mines sub-paths from

the training data within a length threshold θ together with

their frequencies, and builds a Huffman tree using the sub-

paths and their frequencies from the training data to replace

the input data with Huffman codes. It scans through the

training data and locates all sub-paths within the length of

θ = 3 [10]. Then, FSTC builds a prefix tree using the

located sub-paths, where each node is one road segment,

which can show up more than once in the tree. A path

from the root to a node denotes a located sub-path. The

weight regarding each node indicates the frequency of the

sub-path denoted by the path from the root to this node.

All undiscovered road segments in the road network are

also included in the first level under the root in case some

unseen sub-paths are to be compressed. With such prefix

tree, a Huffman tree can be built by the nodes and their

corresponding weights. The more frequent a sub-path is,

the shorter Huffman code it receives. When compressing

a new path, FSTC utilizes a logic similar to Aho-Corasick

algorithm [17] to decompose the new path into Huffman

coded sub-paths. The new trajectory is therefore encoded

by Huffman codes. The decompression of FSTC is similar

to Huffman decoding [15], i.e. simply recovering sub-paths

by visiting the Huffman tree. The compression of FSTC runs

in O(|e|).
5) MFFC: Most Frequent Follower Compression

(MFFC) is an algorithm proposed by us. It is frequency-

based, follower-based and lossless. In real-world road

networks, the traffic flow from one road segment to

its possible following road segments can break down

unevenly. One following road segment could be more

frequently chosen than others by moving objects. From

the above observation, MFFC compresses the path with

the information of the most frequent follower. With a

scan through the training data, we are able to discover the
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following road segments for each road segment the data

covers. Through a frequency statistics, a most frequent

follower table is constructed to denote the most frequent

following road segment for each road segment. We use

an example to illustrate this. As shown in Figure 4, after

scanning four paths P1 = {e1, e3}, P2 = {e1, e4, e6},

P3 = {e2, e5}, P4 = {e1, e4, e6}, a most frequent follower

table is constructed. e1’s most frequent follower is e4,

since its follower e3 has the frequency of 1, and e4 has

the frequency of 2. The same goes with e2 and e4. The

compression stage of MFFC is similar to that of Follow-PA.

During compression, MFFC starts from the first road

segment of the input path P , and check if the second

road segment is the most frequent follower of the first

one. For every next road segment, MFFC checks if the

most frequent follower is the next road segment in P . The

process continues to the end of P . The road segments

which are most frequent followers are then removed. The

decompression of MFFC is to recover the removed most

frequent followers by visiting the most frequent follower

table. The complexity of MFFC is O(|e|), where |e| is the

total size of input paths, since each road segment is visited

once during compression and decompression.

6) FPC: Frequent Pattern Compression (FPC) is a new

algorithm proposed in this paper. It is frequency-based,

path-based and lossless. Intuitively, some paths in the road

network are much more popular than other paths, such

as the main streets of the city. These paths can be seen

as frequent patterns. Similar to frequent pattern mining

methods [18][19], we aim to mine the frequent patterns in

the input data and compress them, as they are a typical

kind of redundancy. FPC scans through the training data

and locates all patterns with a fixed length lfp. Since the

length of the pattern is fixed, FPC simply has to locate a

path with length lfp starting from every road segment in

the training data, except for some road segments at the tail

of the paths, where the remaining path is not long enough.

By counting the frequencies of the patterns, FPC creates

a frequent path table that stores all fixed length patterns

with frequency above the threshold sfp. Each entry in the

frequent pattern table stores an index and the corresponding

frequent pattern. During compression, FPC starts looking for

sub-paths that match the frequent patterns in the frequent

pattern table from the first road segment of the input path.

Whenever a matching sub-path is encountered, FPC replaces

it with the corresponding index in the frequent pattern table.

The decompression of FPC is also trivial, i.e. replacing the

indexes by the corresponding frequent patterns. FPC runs in

O(|e|), where |e| is the total size of input in edges.

7) MFPC: Most Frequent Path Compression (MFPC) is

another algorithm proposed by us that leverages the idea

of frequent pattern. Different from FPC, MFPC focus on

the most frequent path between intersections in the road

network. Similar to the logic of point-to-point shortest path,

we want to compute point-to-point most frequent paths

for each pair of intersections covered in the training data.

However, to bound the complexity of the algorithm, we

only compute point-to-point most frequent path with length

no more than a threshold lb. Similar to FPC and MFFC,

MFPC scans through the training data to locate all sub-paths

with length no more than lb. Each sub-path has a starting

intersection and an ending intersection. Different sub-paths

can have the same starting and ending intersections. By

statistics, a point-to-point most frequent path table is built to

store the point-to-point most frequent patterns. Each entry

stores a pair of intersections and the corresponding most

frequent sub-path. The compression of MFPC proceeds as

follows. MFPC anchors at the first road segment of the

input path P and checks if the sub-path between the starting

intersection of the anchored road segment ea and the ending

intersection of ea+lb matches the corresponding point-to-

point most frequent path. If not, MFPC decrease the gap

by checking ea and ea+lb−1. We check points from far

to near because unlike shortest path, most frequent path

does not guarantee that if the prefix of a path P is the not

most frequent path, P itself must not be the most frequent

path. If a match occurs, MFPC removes the matched sub-

path Pm from the input and continues to anchor at the

next road segment not belonging to Pm. The process then

continues the same way until the end of P . We reuse the

example of SPC for description. As shown in Figure 3,

suppose the MFP between e1 and e4 is {e2, e3}, and e4
and e6 e5. A path P = {e1, e2, e3, e4, e5, e6} (Figure 3(a))

is compressed to P ′ = {e1, e4, e6} (Figure 3(b)) by MFPC.

The decompression is simply recovering MFPs by visiting

the most frequent path table. The compression of MFPC

runs in O(lb|e|), where |e| is the size of input paths. In this

paper, to balance compression ratio and efficiency, we set

lb = 10. Thus, the complexity turns to O(|e|).

D. Temporal Compression Algorithms

Since only one dedicated algorithm for temporal compres-

sion is proposed, we give a brief description of it.

BTC: Since the temporal data of a map-matched trajectory

is represented by (t, d) pairs, BTC [10] treats it as a function

curve in t − d space and modifies an error-bounded line

simplification algorithm [16] and improve the complexity

of it to linear time by introducing a concept called angular

range. BTC presents both error bounds in dimension t and

d, which are NSTD and TSND [10]. This is to bound

the errors of two most common spatio-temporal queries,

namely Whereat and Whenat, respectively. Generally,

BTC removes some points within the error bounds from

the curve formed by (t, d) pairs, replacing them by straight

lines formed by reserved points. The difference between the

original curve l and the simplified curve l′ is within the error

bounds.
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III. EXPERIMENTS

A. Experiment Setup

The device we use for experimental comparison is a One

Amazon EC2 r3.xlarge instance server with Intel E5-2670

CPU and 32GB memory. Experiments are conducted using

the real taxi trajectory data of Beijing. The road network

of Beijing contains 226237 road segments and 166304

intersections. We use the map-matching algorithm proposed

in [12] to generate map-matched trajectories. The map-

matched dataset contains 24390 trajectories. Each trajectory

has around 3000 road segments in average. The size of the

map-matched trajectories is 1.085GB. All of the compared

algorithms are implemented in Java.

B. Comparison Metrics

We test the algorithms using three metrics, which are com-

pression ratio, compression efficiency and query overhead.

Since there is only one dedicated temporal compression

method [10], we mainly compare the spatial compression

methods. The compression ratio is represented as T
T ′ , where

T is the size of map-matched paths, and T ′ is the size

of compressed paths. Compression efficiency is defined by

compression time tc and decompression time td. In terms

of query overhead, we assemble BTC with the spatial

compression methods and conduct query. We use three

common spatio-temporal queries for comparison , where

we randomly generate queries for each category and test

the query overhead. The query overhead is represented by

the efficiency ratio rq , where the most efficient one has

rq = 1, and the others have rq ≤ 1 depending on how much

they are slower than the best one. Some methods[10] may

store query-related auxiliary structures to boost the query

efficiency. For simplicity and fairness, we keep no such

structure when conducting experiments, which is sufficient

for comparison. We describe the three common spatio-

temporal queries used in query overhead comparison as

follows.

• GetTrajectory: Given a trajectory ID TID, this

query returns the corresponding decompressed trajec-

tory T .

• Whereat: Given a trajectory T , a timestamp t, the

query returns < en, θ >, where en is the resulting road

segment, and the offset θ is the distance indicating the

exact location of t on en from the starting point of en.

• Whenat: Given a trajectory T , a position (en, θ) as

illustrated, the query returns the corresponding time t.

C. Preliminaries

1) Compared Algorithms: Among the introduced algo-

rithms, a key observation is that FSTC [10] is an encoding

algorithm, while the other algorithms are simplification algo-

rithm, which means FSTC is orthogonal to other methods.

Thus, beside the comparison of individual algorithms, we

also combine FSTC with the other algorithms and conduct

experimental comparison.

We propose experimental comparison among all described

algorithms except MMTC. Firstly, MMTC is lossy and

guarantees no error bound, while all the other algorithms

are lossless. It is not appropriate to compare it with other

algorithms under the same metrics. Secondly, the perfor-

mance comparison of MMTC and the state-of-the-art meth-

ods is already done in [10], where MMTC shows limited

performance and is greatly outperformed by PRESS. Since

we focus on unsolved problems but not duplicating existing

works, we exclude MMTC in comparison

2) Unconnected Gap Recovery: Due to the accuracy and

sampling rate of the location acquisition devices, the map-

matched path of a trajectory may sometimes contain several

unconnected gaps within the path. Existing map-matching

algorithms link these gaps with shortest paths for simplicity,

which is what we do in this paper. However, the actual

path between these gaps can be very different from the

links. More importantly, such links will unfairly boost the

compression ratio of shortest-path-related algorithms not

only because they themselves are shortest paths, but also

because they can link a long shortest path before their

heads and after their tails. The compression performance

of shortest-path-related algorithms could see a drop if the

unconnected gaps are linked by frequency or probability

based paths, which is closer to the real paths the moving

objects travel.

3) Auxiliary Structures: The introduced algorithms main-

tain different auxiliary structures during compression, e.g.

the frequent follower table of MFFC. Such structures are

usually ignored since they do not scale with input size.

According to our experiments, the size of the auxiliary

structures of MFFC, FPC, FSTC and MFPC are reasonable,

ranging from 1MB to 261MB. However, due to the complex

road network of Beijing, the shortest path table of SPC

has the size of 104GB, which is huge. This indicates that

the shortest-path-related algorithms suffer a poor auxiliary

structure storage scalability in terms of the complexity of

road networks.

4) FPC and MFPC Configuration: Since FPC and MFPC

have input parameters, namely the fixed length lfp for FPC

and the length bound lb for MFPC. We conduct experiments

using various lfp and lb to test the performance of FPC

and MFPC, respectively. AS shown in Figure 9 and 10,

to guarantee a good compression ratio as well as saving

compression time, we choose lfp=6 and lb=10, respectively.

D. Compression Ratio Comparison

We first report the compression ratio of individual al-

gorithms. As shown in Figure 5, SPC shows the best

performance in terms of compression ratio, which is 8.62.

MFPC and MFFC have close compression ratios to the best,

which are 7.31 and 5.82, respectively. FSTC and Follow-PA
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show relatively poor compression ratios, while Follow-PA is

the worst, which is 1.34.

Next, we report the compression ratio of combined al-

gorithms. Each path or follower simplification algorithm

is combined with FSTC. It is seen from Figure 6 that

MFPC+FSTC is the best one, with the compression ratio

of 16.00. MFFC+FSTC and SPC+FSTC show promising

compression ratios, which are 13.47 and 15.05, respectively.

Follow-PA presents limited compression ratio, which is

3.20. We can see that combined algorithms achieve better

compression ratios than individual ones.

E. Compression Time Comparison

We compare the compression time of individual algo-

rithms, and the results are shown in Figure 7. It can be

seen that MFFC achieves the best compression efficiency,

whose compression time is 45.94s. FPC is also efficient

with the compression time of 52.96s. However, Follow-

PA, MFPC, FSTC and SPC are performing disappointingly.

Follow-PA, FSTC and MFPC have the compression time

of 110.41s, 165.85s and 164.38s, respectively, which are

far slower than MFFC and FPC. Most unfortunately, SPC

has the longest compression time much worse that all other

algorithms, which is 273.96s. Due to the size of shortest path

table, we have to cut it into parts and load each part into

main memory a time. Thus, taking the loading time (85.73s)

into consideration, the compression time of SPC goes even

worse, which is 359.69s.

Now we move on to the compression time of combined

algorithms. As shown in Figure 8, the ranking is similar

to individual algorithms. MFFC+FSTC has the best effi-

ciency with the compression time of 70.68s. FPC+FSTC still

achieves close efficiency to MFFC+FSTC, and the efficiency

of Follow-PA+FSTC and MFPC+FSTC are still relatively

bad. SPC+FSTC is the worst with the compression time of

308.97s, not to mention the 394.7s counting the loading table

time. It is obvious that combined algorithms consume more

time than individual ones during compression.

F. Query Overhead Comparison

Since the individual algorithms and combined algorithms

have similar results in terms of efficiency ratio, due to the

space limitation, we only present the results of combined

algorithms. Note that the efficiency ratios of individual and

combined algorithms are similar, but combined algorithms

generally consume more time when conducting queries.

In terms of GetTrajectory, as shown in Figure 11, the

two algorithms with good query efficiency are MFFC (Here

we omit ‘+FSTC’) and FPC, whose efficiency ratios are 1

and 0.89, among which MFFC is better, taking up the first

position. The efficiency ratio of Follow-PA is in the median,

which is 0.60. MFPC and SPC have close efficiency ratios,

which are 0.37 and 0.39, respectively. These two algorithms

are significantly slower in terms of query, where MFPC is

the worst, if we do not consider the loading table time. In

terms of Whereat, The best performing algorithm is MFFC,

while the worst performing algorithm is MFPC. Follow-

PA also sees a significant drop in performance in terms of

Whereat compared with GetTrajectory. The situation of

Whenat is similar to Whereat but a bit different. FPC

becomes the best performing algorithm instead of MFFC.
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IV. CONCLUSION

In this paper, we summarize existing road-network-

constrained trajectory compression methods and give them a

novel classification. We also propose three new compression

algorithms, namely MFFC, FPC and MFPC to fill the

unexplored categories according to the classification. We

conduct a thorough experimental comparison of existing

and new methods. From to the experiments, we discover

the performances of individual and combined algorithms

in terms of different performance metrics. In terms of

individual algorithms, the one with best compression ratio

is SPC, and the one with best compression efficiency is

MFFC. In terms of combined algorithms, the one with

best compression ratio is MFPC+FSTC, the one with best

compression efficiency is MFFC+FSTC, and the ones with

lowest query overhead are MFFC+FSTC, MFFC+FSTC and

FPC+FSTC for GetTrajectory, Whereat and Whenat,
respectively. Generally, combined algorithms achieve higher

compression ratios, at the cost of losing some compres-

sion and query efficiency. SPC and MFPC have excellent

compression ratios, but suffers low compression and query

efficiency, especially for SPC. MFPC+FSTC may be a

proper choice when storage problem is addressed. MFFC

has good overall performance both in compression ratio,

compression efficiency and query overhead. Thus, MFFC

and MFFC+FSTC are good choices when compression ratio,

compression efficiency and querying utility are all valued.

We also discover that the existing algorithm SPC suffers

poor auxiliary structure storage scalability in terms of the

complexity of the corresponding road network. The com-

pression and query efficiency of SPC are also unsatisfactory

in the case of complex road network.

The possible future works are 1)extending the comparsion

to more situations, such as online compression, 2)proposing

new algorithms that fall in the unexplored categories ac-

cording to our classification, which are ‘frequency-based &

lossy & path-simplification’ and ‘topology-based & encod-

ing’, and 3)proposing novel dedicated temporal compression

algorithms.
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