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Abstract—Molecular classification benefits a lot from the re-
cent success of graph contrastive learning (GCL) which pulls
positive samples close and pushes the negative samples apart.
GCL methods generate negative and positive samples via graph
augmentation. Due to the structural corruption caused by graph
augmentation, not all generated negative samples retain discrim-
inative semantics. However, existing GCL methods ignore the
difference between negative samples and hold an assumption
that the importance of all negative samples is the same, leading
to degraded performance of molecular classification. To address
this issue, in this paper, we propose a novel molecular graph
contrastive learning model (MocGCL) by selecting more useful
negative samples to improve the performance of molecular
classification. Specifically, we first employ different encoders to
generate positive samples to improve the diversity of positive
samples. Then, we design negative generation to generate negative
samples and define semantic integrity to measure the usefulness
of generated negative samples. Moreover, we propose the novel
negative selection to dynamically select the negative samples of
more usefulness to improve the molecular representation. In
addition, we improve the contrastive loss to adaptively adjust
the distance between selected negative samples, which can pre-
serve the distinctive properties of selected negative samples in
sample space. Extensive experiments on six typical bioinformatics
datasets demonstrate the effectiveness of our MocGCL compared
to most state-of-the-art methods.

Index Terms—Graph contrastive learning, molecular classifi-
cation, self-supervised learning

I. INTRODUCTION

Molecular classification is to determine whether some
molecular graphs have certain properties [1]–[3], which has
wide real-world applications, such as genetic classification
[4], drug development [5], and cancer detection [6], [7].
The previous molecular classification methods focus on using
extensive domain knowledge to identify some representative
local molecular structures. These methods suffer huge compu-
tational costs and are insufficient for global structure analysis
[8]–[10]. Recently, owing to the impressive representational
power in various domains, graph neural networks (GNNs)
[11]–[13] gain increasing attention in the field of molecu-
lar classification. The above methods are all trained in a
supervised manner, which relies on sufficient fine-annotated
molecules. However, labeling molecules incurs massive time
costs and requests a lot of domain knowledge [14], [15].

Fig. 1. The illustration of different qualities of generated samples. Molecular
graphs Ga and Gb are positive pairs, and molecular graphs Gc and Gd are
also positive pairs. Molecular graphs Ga, Gb, Gc, and Gd are treated as
negative samples for other molecular graphs.

More recently, self-supervised graph contrastive learning
(GCL) [16] methods achieve overwhelming accomplishments
in the field of molecular classification. These methods mostly
apply graph augmentation to generate positive and negative
samples. To obtain the refined molecular representation to
boost molecular classification without relying on fine anno-
tations, GCL pulls the positive samples1 close to each other
and pushes negative samples2 apart. Existing GCL methods
[17]–[19] generate samples in a random fashion and select
the prefabricated graph augmentation operations per dataset to
improve the performance of GCL on molecular classification.
However, molecular graphs contain a wealth of fine structural
information. Thus, augmenting molecular graphs causes the
generated samples to lose their salient semantics and be far
away from their original molecular graphs.

As shown in Figure 1, Ga is generated from G1 via node
dropping graph augmentation, and Gb is generated from G1

via edge perturbation. In the previous methods, Ga and Gb are
employed without discrimination when these two samples are
treated as negative samples. However, Ga inherits the salient
properties from the original graph, but the salient properties in
Gb are corrupted. The generated samples Ga with more salient

1Samples generated from the same molecule (anchor molecule) are positive
samples for each other

2Samples generated from other molecules are treated as negative samples
for anchors



parts can provide abundant molecular attributes to facilitate
molecular representation learning. Thus, Ga is more useful
than Gb in GCL. Similarly, Gd is more useful than Gc. Em-
ploying Gb and Gc as negative samples leads to inefficiency
in contrastive learning. Therefore, generated samples have
different qualities. Selecting more useful generated samples
can improve the performance of GCL.

The present methods mostly ignore that some negative sam-
ples which preserve less original molecular structure cannot
contribute the distinctive semantics of original molecules to
positive samples. We argue that treating negative samples
equally leads to performance degradation, which cannot pro-
vide sufficient molecular attributes for molecular representa-
tion learning in GCL. Therefore, we should select negative
samples that can be more useful to positive samples, so as to
help the model capture refined molecular representation.

In this paper, we propose a novel molecular graph con-
trastive learning (MocGCL) to improve the performance of
molecular classification by selecting negative samples. Specif-
ically, to improve the sample diversity of positive samples and
reduce the significant semantics corruption, we first use differ-
ent encoders to generate positive sample representation. Then,
we design a negative generation to obtain negative samples
and measure the usefulness of negative samples via semantic
integrity. Moreover, a negative selection module is proposed
to dynamically select more useful negative samples in each
training iteration based on the ranking of semantic integrity.
In addition, we improve the contrastive loss to preserve the
distinctive properties of negative samples in sample space. We
highlight the major contribution of this paper as follows:

• We propose a novel molecular graph contrastive learning
(MocGCL) that can select more useful negative samples
to facilitate the learning of molecular representation to
improve the performance of molecular classification.

• We propose the negative selection by considering seman-
tic integrity to select negative samples with more useful-
ness, so as to obtain richer molecular representation.

• Experiments on various datasets demonstrate that
MocGCL with selecting negative samples can improve
the performance of molecular classification compared to
several state-of-the-art methods.

II. RELATED WORK

A. Supervised Molecular classification
Early molecular classification methods [2], [10], [20], [21]

typically employ atoms as vertices, and bonds as edges to learn
the graph-based representation of molecules. For example, WL
[20] uses the number of different atoms labels of subtree
kernels as the feature vectors of molecular graphs, and DGK
[21] defines the representation of molecules by structural
similarity. Recently, GNNs have shown their powerful ability
to learn the graph-based representations of molecules. For
example, GCN [12] implements molecular graph convolution
by using the Laplace transform, which reduces the heavy
computational costs. GAT [13] focuses more on the message-
passing process between atoms and neighbors rather than on

the molecular structure, which leverages attention mechanisms
to aggregate the neighbors’ information with different weights.
GIN [11] utilizes GNNs to construct a network structure with
the same strength of expressiveness as the Weisfeiler-Lehman
(WL) test [11]. The aforementioned methods are all trained
in a supervised manner, which relies on the sufficient fine-
annotated molecules. However, labeled molecular graphs are
scarce, and labeling molecular graphs incurs additional time
overhead. Our MocGCL uses a self-supervised training man-
ner that can be independent of the fine-annotated molecules.

B. Graph Contrastive Learning

More recently, tremendous researches focus on graph self-
supervised learning [16], [22], [23] that can obtain information
from unlabeled molecular graphs. Among them, graph contrast
learning (GCL) can maximize the agreement between positive
samples compared with negative samples to capture molecular
representations. Typically, GraphCL [17] demonstrates learn-
ing molecular representation by pretraining can help molecular
classification. JOAO [18] proposes a unified bi-level optimiza-
tion framework that allows data augmentation methods to be
selected during different training phases based on the molec-
ular datasets. MoCL [19] incorporates bioinformatics domain
knowledge into data augmentation to avoid altering semantics.
SimGRACE [24] employs encoder perturbations instead of
data augmentation to generate positive samples and negative
samples. However, previous GCL methods ignore the fact
that generated negative samples have different contributions
to positive samples. Selecting discriminative negative samples
that are more useful for positive samples can improve the
performance of molecular classification.

III. METHODOLOGY

In this section, we present MocGCL in detail. As sketched
in Figure 2, we first introduce the positive and negative
generation, then followed by the negative selection. Finally,
we introduce the improved contrastive loss of MocGCL.

Graph G is represented as G = (V,E,A), where V =
{v1, v2, · · · , vn} denotes the node set, E denotes the set of
edges, A ∈ Rn×n denotes the adjacency matrix, and n is the
number of nodes. The negative sample generated from G is
represented as Ĝ = (V̂ , Ê, Â).

A. Positive Generation

The previous GCL methods mostly apply graph augmen-
tation operations to generate positive samples. However, aug-
menting molecular graphs corrupts the salient properties, and
positive samples may have overlapping structures. To reduce
the semantic corruption and improve the sample diversity of
positive samples, we utilize the GNNs [11] encoder and its
momentum-update version [25] to generate positive samples
at the representation level. The GNNs encoder fq can be
formulated as,

hG = fq(G; θq), (1)



Fig. 2. The overall illustration of the MocGCL architecture.

where hG is the representation of molecular graph G, and θq
is the parameter of GNNs encoder fq . The momentum-update
version GNNs encoder fk can be formulated as,

h
′

G = fk(G; θk), (2)

where h
′

G is also the representation of molecular graph G,
and θk is the parameter of momentum-update version GNNs
encoder fk. The process of momentum-update strategy can be
described as,

θk ← mθk + (1−m)θq, (3)

where m ∈ [0, 1) is a momentum coefficient. During the
training, θq is updated by back-propagation, but θk is only
updated from θq by the momentum-update Eq.(3).

Moreover, we adopt a two-layer MLP p(·) as the projection
head to map the representations to a task-based latent space,
which can enhance the performance of molecular classification
[26]. The projection head can be described as,

qG = p(hG), q
′

G = p(h
′

G), (4)

where qG and q
′

G are the final positive samples representation
after projecting, and these two representations are obtained
from the same graph G.

B. Negative Generation
In GCL, samples generated from other molecules are treated

as negative samples for anchors. In this subsection, we intro-
duce the operations of generating negative samples.

Graph Augmentation: Following the GraphCL [17], we
apply two graph augmentation operations in a random fashion
to generate negative samples: (1). Node Dropping: randomly
drop a node along with its connections. (2). Edge Perturbation:
remove an edge randomly. We randomly choose the above two
operations for the molecular graph G to generate one nega-
tive sample Ĝ. To keep the negative samples’ representation
consistent in the latent space, we obtain the representations of
negative samples by the momentum-update encoder via Eq.(2)
and Eq.(4), which can be described as,

hĜ = fk(Ĝ; θk), qĜ = p(hĜ), (5)

where hĜ is the representation of negative sample Ĝ, and
qĜ is the final representation of the negative sample Ĝ after
projecting. Subsequently, we use ni to denote qĜi

to easily
distinguish between positive and negative samples.

C. Negative Selection

Applying the above two graph augmentation operations al-
ters the molecular semantics. Some generated negative samples
with less original salient structure cannot contribute sufficient
molecular semantics to positive samples to obtain refined
molecular representation. To tackle this problem, we design
a novel negative selection to select more useful generated
negative samples.

Semantic Integrity Calculation: To identify the negative
samples of more usefulness, we define the semantic integrity
ψĜ of the sample Ĝ by calculating the semantic importance
of each node and edge in the original molecular graph G. To
measure the importance of node vi to molecular semantics,
we first define the initial semantic importance φ0

vi , which can
be described as,

φ0
vi = dvi , (6)

where dvi denotes the number of edges connecting node vi. To
further take the importance of both a node and its neighboring
nodes into consideration, we apply eigenvector centrality iter-
ation [27] to calculate the final semantic importance of nodes.
The eigenvector centrality iteration can be described as:

ΦG(t) = AΦG(t− 1), (7)

where ΦG(t) = [φt
v1 , φ

t
v2 , · · · , φ

t
vn ]

T is the semantic impor-
tance matrix of nodes after iterating t turns, and T means trans-
pose of the matrix. Specifically, ΦG(0) = [dv1 , dv2 , · · · , dvn ]T
denotes the degree matrix of graph G. t ∈ N denotes the
number of iterations, and A is the adjacency matrix of graph
G. The iteration Eq.(7) terminates in case that ΦG(t) and
ΦG(t − 1) are equal after normalization, and ΦG(t) is the
final semantic importance matrix of nodes in graph G.



Then, in the molecular graph G, we define the semantic
importance of an edge as the weighted average of two adjacent
nodes’ semantic importance, which can be described as,

φt
eij =

φt
vi

dvi
+
φt
vj

dvj
, (8)

where eij is the edge connecting vi and vj , degree dvi and
dvj denote the number of edges connecting node vi and node
vj respectively.

After obtaining the semantic importance matrix ΦG(t), we
utilize the semantic importance of both the nodes and edges to
calculate the semantic integrity ψĜ of the generated negative
sample Ĝ. We present the calculation of semantic integrity in
two cases according to the two graph augmentation operations:
(1). Node Dropping: when we generate negative sample Ĝ by
dropping a node vk from molecular graph G, the semantic
integrity ψĜ can be calculated as,

ψĜ =

∑
vi∈V,i ̸=k φ

t
vi∑

vi∈V φ
t
vi

, (9)

where φvi is the semantic importance of node vi in graph G,
and V is the node set of G.
(2). Edge Perturbation: when we generate the negative sample
Ĝ by deleting an edge euv , the semantic integrity ψĜ can be
calculated as,

ψĜ =

∑
eij∈E,eij ̸=euv

φt
eij∑

eij∈E φ
t
eij

, (10)

where φeij is the semantic importance of edge eij in graph
G, and E denotes the edges set of G.

To measure the usefulness of different generated negative
samples, we need to compare the semantic integrity between
generated samples in different two augmenting cases.

Theorem III.1. For a given molecular graph G, the sum of
the semantic importance of all nodes is constantly equal to
the sum of the semantic importance of all edges, which can
be described as, ∑

eij∈E

φt
eij ≡

∑
vi∈V

φt
vi (11)

Proof. According to Eq.(8), we prove the Theorem III.1:∑
eij∈E

φt
eij =

∑
eij∈E

φt
vi

dvi
+
φt
vj

dvj

=
φt
v1

dv1

+ · · ·+
φt
v1

dv1︸ ︷︷ ︸
dv1

+ · · ·+
φt
vn

dvn
+ · · ·+

φt
vn

dvn︸ ︷︷ ︸
dvn

=
∑
vi∈V

dvi
φt
vi

dvi

=
∑
vi∈V

φt
vi ,

Fig. 3. The architecture of negative selection.

Theorem III.1 demonstrates that the maximum semantic
integrity calculated by Eq.(9) is exactly equal to the maximum
semantic integrity calculated by Eq.(10). In other words, by
our definition of nodes and edges’ semantic importance, the
semantic integrity calculated in two different graph augmen-
tation operations is equivalent. The random selection of two
graph augmentation operations to generate negative samples
does not introduce ambiguity in semantic integrity.

After calculating the semantic integrity, we select some
negative samples with more usefulness by comparing semantic
integrity. Figure 3 illustrates the scheme of our proposed
negative selection. We dynamically select top-p useful negative
samples and maintain a negative queue Q of size K as the
negative set. The negative queue Q can be described as,

Q = {n1,n2, · · · ,ni, · · · ,nK} (12)

Where ni is the selected negative sample Ĝi’s representation
qĜi

obtained via the Eq.(5). For ease of description, we
rename the representation of negative sample Ĝi as ni. The
negative queue can reuse the negative samples generated from
the previous mini-batches.

Dynamic Entry: In the previous methods CSSL [23] and
MoCo [25], the number of queue entries per mini-batch p
is constant, e.g., mini-batch size. However, with the updating
of networks, the representation of negative samples becomes
close to each other in some mini-batches. We argue that nega-
tive samples of these mini-batches lose their rich molecular
semantics at the representation level, so this decreases the
number of negative samples with more usefulness. Hence,
we dynamically adjust p queue entries during the training.
Specifically, to measure the distance of negative samples in l-
th mini-batch, we define the clustering degree by the average
of the cosine similarity between negative samples,

Cl =
2

N(N − 1)

N∑
i=1

N∑
j=i+1

cos(ni,nj), (13)

where Cl is the clustering degree, cos(·) is the cosine simi-
larity, N is the number of anchor molecular graphs, and ni is
the representation of the negative sample. Then, we calculate
the number of queue entries p through the comparison of
the clustering degree between the current mini-batch and the
neighboring mini-batch. The number of queue entries p can
be described as,

p =


∑l−1

i=l−T Ci∑l−1
i=l−T Ci+(T−1)Cl

·N , l > T

N , l ≤ T,
(14)



where p is the number of queue entries, and T is a predefined
parameter. Especially, when l ≤ T , all negative samples in the
current mini-batch enter the negative queue to avoid the cold
boot issue.

Negative ranking: To select the top-p useful negative sam-
ples, we rank the generated negative samples according to
semantic integrity. The negative samples with higher seman-
tic integrity can be prioritized into the negative queue in
each training round. In the current l-th mini-batch, G =
{G1, G2, · · · , GN} is the anchor molecular graph set, and
Ĝi is one negative sample generated from the corresponding
anchor Gi. N is the number of anchor molecular graphs. The
selection of negative samples can be described as,

idx = rank({ψĜ1
, ψĜ2

, · · · , ψĜN
}, p), (15)

where rank(·) is the operation of negative samples ranking,
idx returned by rank(·) denotes the subscript of selected
negative samples, p is the number of queue entries cal-
culated via Eq.(14), and ψĜi

is the semantic integrity of
negative sample Ĝi calculated by the Eq.(9) or Eq.(10).
The set of selected negative samples can be presented as
{nidx[1],nidx[2], · · · ,nidx[p]}. After the current training round
finishes, these selected negative samples enter the negative
queue, and the same number of negative samples of the oldest
mini-batch in the negative queue is removed.

D. Contrastive Loss

We take the pretrain and finetune scheme to train our
model. We first pretrain our MocGCL to enforce the agreement
between positive samples qG and q

′

G compared with the
negative sample set Q = {n1,n2, · · · ,nK} to pretrain the
encoder fq and the projection p(·). Following the InfoNCE
[28] used in the previous methods [17]–[19], [24], we adjust
the contrastive loss with the attention mechanism to keep the
distinctive properties of selected negative samples in sample
space. The improved contrastive loss LP can adaptively adjust
the distance between negative samples’ representations to
improve the uniformity of negative samples, which can be
described as,

LP =

−1
N

N∑
i=1

log
exp(qT

Gi
q

′

Gi
)/τ

exp(qT
Gi

q′
Gi
)/τ +

∑K
k=1 aik · exp(qT

Gi
nk)/τ

,

(16)
where N is the size of the mini-batch, K is the size of the
negative queue Q, τ ∈ (0, 1] is the temperature parameter that
can change the uniformity of negative samples’ representa-
tions, aik is the attention coefficient which can be described
as,

aik = qT
Gi

nk. (17)

After pretraining, we finetune the encoder fq and the
projection p(·) based on the molecular classification task and
predict the molecular properties.

TABLE I
STATISTICS OF DATASETS.

Dataset #Graphs #Classes #Avg.Edges #Avg.Nodes
D&D [29] 1178 2 715.66 284.32

PROTEINS [30] 1113 2 72.82 39.06
ENZYMES [30] 600 6 62.14 32.63

NCI1 [31] 4110 2 32.30 29.87
MUTAG [32] 188 2 19.79 17.93

Mutagenicity [33] 4337 2 30.77 30.32

IV. EXPERIMENTS

In this section, we present experiments conducted to demon-
strate the effectiveness of our MocGCL for molecular classi-
fication.

A. Experimental setups

Datasets: We use six typical bioinformatics datasets namely
D&D [29], PROTEINS [30], ENZYMES [30], NCI1 [31],
MUTAG [32], and Mutagenicity [33]. The datasets’ statistics
are summarized in Table I. We randomly split each dataset
into three parts: 80% for the train set, 10% for the validation
set, and 10% for the test set. Each full dataset without labels
is used for pretraining, and the corresponding dataset with
labels is used for finetuning. The random split is repeated 10
times, and the average performance with standard deviation is
reported.

Baselines: We compare the following baselines to demon-
strate the effectiveness of our MocGCL on molecular classifi-
cation. Baselines can be divided into supervised methods and
self-supervised methods. The supervised methods contain three
categories: (1). Molecular graph kernel-based methods which
focus on performing classification based on the similarity
between molecules include Weisfeiler-Lehman Subtree Ker-
nel(WL) [20] and Deep Graph Kernels(DGK) [13]. (2). Molec-
ular graph neural network methods which both utilize the
neural networks and molecular structure information include
Graph Convolutional Network(GCN) [12] and Graph Iso-
morphism Network(GIN) [11]. (3). Molecular graph pooling
methods which combine graph neural networks with pooling
mechanisms include gPool [34] and EigenPooling [35]. The
self-supervised methods which obtain molecular representation
from unlabeled molecular graphs include InfoGraph [36],
GraphCL [17], SUGAR [37], CSSL [23], SimGRACE [24],
and FGCL [38].

Parameter settings: The common parameters for training
the model are set as momentum coefficient m = 0.9, tem-
perature parameter τ = 0.07, dropout ratio = 0.5, and L2
norm regularization weight decay = 0.01. For NCI1 [31] and
Mutagenicity [33], negative queue size K = 2048. For D&D
[29], PROTEINS [30], ENZYMES [30] and MUTAG [32],
negative queue size K = 512. For each dataset, the parameter
T is predefined as the negative queue size divided by the
size of the mini-batch to avoid the cold boot issue. We adopt
GIN [11] as the GNNs encoders with 3 layers and 32 hidden
dimensions.



TABLE II
SUMMARY OF EXPERIMENTAL RESULTS: “AVERAGE ACCURACY(%)±STANDARD DEVIATION (RANK)”.

Method Categories
Dataset Average

RankENZYMES PROTEINS D&D NCI1 Mutagenicity MUTAG
WL [20]

Supervised

52.22±1.26 - 1 76.44±2.35 76.65±1.99 80.32±1.71 82.05±0.36 8.4
DGK [13] 53.43±0.91 75.68±0.54 - 80.31±0.46 - 87.44±2.72 6.5
GCN [12] 49.63±3.27 75.17±3.63 73.26±4.46 76.29±1.79 76.40±0.61 80.20±2.86 11
GIN [11] 51.33±2.08 76.20±2.80 79.53±1.34 76.76±1.19 76.24±0.74 89.40±5.60 8

EigenPool [35] 64.67±0.24 78.84±1.06 78.63±1.36 77.24±0.96 80.11±0.73 78.9±0.49 6.5
gPool [34] 43.00±4.20 77.68±1.75 77.02±1.32 76.25±1.39 80.30±1.54 89.30±6.85 8.7

InfoGraph [36]

Self-
Supervised

53.41±2.34 75.18±0.51 74.24±0.86 70.93±1.78 72.32±1.70 89.01±1.13 9.7
GraphCL [17] 50.35±2.16 78.57±1.54 81.23±0.56 80.44±0.89 76.88±1.43 88.91±1.63 6.8
SUGAR [37] 52.88±2.29 81.34±0.93 84.03±1.33 84.39±1.63 78.99±1.00 96.74±4.55 3.7
CSSL [23] 51.47±1.39 82.50±1.01 82.18±1.34 80.09±1.07 82.64±0.83 91.01±3.66 4.3

SimGRACE [24] 52.33±1.37 78.81±1.38 79.04±1.73 76.77±0.65 74.58±0.67 93.10±3.10 6.8
FGCL [38] 57.39±1.67 73.91±1.88 85.29±0.76 79.46±0.91 81.57±1.01 - 5

MocGCL(Ours) 65.30±2.48 84.91±1.81 84.77±1.52 83.19±1.29 83.44±0.58 97.50±3.35 1.3

TABLE III
ABLATION STUDY RESULTS: “ACCURACY(%)”

Model
Dataset Average

AccNCI1 Mutag ENZYMES PROTEINS
w/o SS 79.13 81.79 62.13 81.63 76.17

Full-Batch 78.61 81.11 63.27 81.85 76.21
Semi-Batch 79.28 82.11 63.33 82.07 76.69

Quarter-Batch 78.95 81.98 61.83 81.69 76.11
w/o LP 80.26 83.18 63.46 83.04 77.49

MocGCL 83.19 83.44 65.30 84.91 79.21

B. Overall performance results

We evaluate our MocGCL on the six above-mentioned
datasets. The experimental results are summarized in Table
II where the best results are shown in bold. As illustrated in
Table II, MocGCL outperforms baselines on four datasets and
has the highest average accuracy on all datasets. Specifically,
MocGCL outperforms the second-best self-supervised method
FGCL [38] by 13.78% on the ENZYMES [30] dataset. This
may be because MocGCL can capture refined molecular
representation by selecting more useful negative samples so
that the model is more conducive to multi-categories classifi-
cation tasks. Besides, The possible reason for MocGCL falling
behind FGCL and SUGAR [37] is that these two baselines
both propose a pooling mechanism. The pooling mechanism
can disentangle the graphs into hierarchical graphs in GCL,
which makes these models perform better on the denser NCI1
and D&D datasets. Under similar dataset sizes, the NCI1
[31] and D&D [33] are denser than Mutagenicity [33] and
PROTEINS [30] respectively. Hence, MocGCL outperforms
FGCL and SUGAR methods on both the Mutagenicity and
PROTEINS datasets. In general, Our MocGCL shows a sig-
nificant improvement over the recently developed methods.

1The reported results of the baseline methods come from the initial
publications (”-” means results and public code are both not available).
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C. Ablation study

In this subsection, table III presents the ablation study
results on four datasets. To verify the validity of negative
selection, we first perform MocGCL without selecting negative
samples (w/o SS). Then, we investigate the effectiveness of
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Fig. 6. t-SNE visualization on NCI1 dataset. Negative representations are obtained from the negative queue set and anchor molecular representations are
obtained from the nearby six mini-batches before the end of pretraining.

dynamic entry by fixing p queue entries in each training round:
(1) Full-Batch model: we fix the number of queue entries as
the size of the full mini-batch. (2) Semi-Batch model: we fix
the number of queue entries as the half size of the mini-batch.
(3) Quarter-Batch model: we fix the number of queue entries
as the quarter size of the mini-batch. In addition, we also
perform MocGCL using InfoNCE loss instead of contrastive
loss LP (w/o LP ). As shown in Table III, the proposed
MocGCL achieves the best average accuracy of 79.21% on
four datasets. The model without negative selection (w/o
SS) degrades by at most 4.9% on all datasets substantially.
This demonstrates that selecting more useful negative samples
facilitates molecular representation learning in GCL. Fixing
the number of queue entries also degrades the performance of
MocGCL. This indicates that the dynamic entry mechanism
can dynamically select more useful negative samples to im-
prove the performance of GCL. Moreover, table III also shows
that contrastive loss LP can improve the performance by at
most 2.2% on molecular classification.

D. Negative set size analysis

Figure 4 presents the results of negative set size analysis on
CSSL [23], GraphCL [17], and proposed MocGCL. As shown
in Figure 4, when the negative set size equals 2048, all meth-
ods achieve the best performance, and our proposed MocGCL
outperforms GraphCL by 2.4%. Moreover, the performance
of both GraphCL and CSSL decreases as the negative set size
decreases, but the performance of MocGCL remains around
83%. A smaller negative set size provides fewer negative
samples, which further demonstrates that dynamic entry can
improve the quality of negative samples to improve the per-
formance of GCL on molecular classification.

E. Temperature parameter sensitive analysis

Figure 5 presents the impact of the temperature parameter
on our proposed MocGCL. We respectively adjust the value
of the temperature parameter in the contrastive loss LP and
the InfoNCE [28]. As shown in Figure 5, the performance
in MocGCL always outperforms that in InfoNCE for any of

the temperature parameters. Moreover, the fluctuations in the
InfoNCE’s performance decrease significantly when changing
the temperature parameter, but our proposed MocGCL is
insensitive to temperature parameters. This indicates that our
proposed MocGCL can keep the distinctive properties of
selected negative samples in sample space without relying too
much on the regulation of the temperature parameter.

F. Visualization

Figure 6 visualizes the distribution of negative samples’
representation in CSSL [23] and our MocGCL by t-SNE on
the NCI1 dataset. As shown in Figure 6, we note that the
distribution of negative sample representation show clustering
in CSSL but is uniformly distributed in MocGCL. Negative
samples in CSSL are close to each other in the same cluster,
which demonstrates some negative samples lose their distinc-
tive properties. Too more negative samples staying in the same
cluster causes negative sample redundancy. Contrary to that,
MocGCL can keep the uniformity of negative samples. This
indicates that MocGCL can select more kinds of negative
samples which can contribute more molecular semantics to
positive samples.

V. CONCLUSION

In this paper, we propose MocGCL, a novel molecular
graph contrastive learning via negative selection to improve
the performance of GCL on molecular classification. First,
the positive generation applies momentum-update encoders to
generate diverse positive samples and reduce semantics corrup-
tion caused by graph augmentation. Then, the negative gener-
ation defines semantic integrity to determine which generated
negative samples are more useful for positive samples, and
the proposed negative selection dynamically selects negative
samples of usefulness. In addition, the improved contrastive
loss help selected negative samples to preserve their distinctive
properties in sample space. Extensive experiments on molec-
ular classification show the effectiveness of our MocGCL.
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