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Abstract—Gaze estimation has a wide range of applications
such as neuroscience and clinical research. In this paper, we
propose and implement a fast and accurate user-specific gaze
estimation system, called FAU-Gaze. FAU-Gaze supports online
real-time training with an inference speed of up to 7-11.5 ms in
100 FPS. Compared with existing models, the kernel model FPGC
(Feature-based Personalized Gaze Calibrator) of FAU-Gaze in-
creases the accuracy by 36.4% and 33.7% on MPIIFaceGaze
and TabletGaze respectively. By mining each user’s potential
characteristics, FAU-Gaze can more accurately locate each user’s
real gaze position. In order to test FAU-Gaze, we also introduce a
low-resolution and low-definition laptop gaze estimation dataset
TobiiGaze containing 41,000 images. Through our experiments on
both TobiiGaze, MPIIFaceGaze, and TabletGaze, the prediction
error of FAU-Gaze is reduced to 1.61 cm and the robustness
outperforms the state-of-the-art.

Index Terms—deep learning, gaze estimation, eye appearance

I. INTRODUCTION

Gaze reveals human mental state and behavioral activities.
Gaze estimation has many applications in neuroscience re-
search [1], human-computer interaction [2], assisted driving
[3], market and user research [4], psychology research [5], and
online education [6]. With the development of deep learning
in computer vision, methods based on Convolutional Neural
Network (CNN) [7]–[10] make gaze estimation cheaper and
faster. Gaze estimation has two categories: 2D gaze estimation
[8], [9], [11], [12] and 3D gaze estimation [13], [14]. In this
paper, we focus on 2D gaze estimation: the position (x, y)
where the gaze falls on the screen.

A general gaze estimation model cannot explicitly distin-
guish the gaze stance across different people. Hence, it is
challenging to construct a fast and precise gaze estimation
framework with personalized calibration. More specifically: 1)
Lack of data. In real-life scenarios, images captured by the
front camera of mobile devices may have low resolution and
definition, different from open datasets [8], [11], [15] with
high resolution and definition. 2) Bad calibration method.
Obtaining additional calibration data requires users to look at
a fixed position on the screen. [8] requires 13 fixed calibration
points, and [12] requires fewer calibration points (≤5). The
above methods make users impatient. 3) Low accuracy. Per-
sonalized calibration is critical to improving accuracy. Support
Vector Regression (SVR) [8] and few-shot learning [12] are
introduced in recent years but can be further improved.

Fig. 1. General working process of FAU-Gaze.

In this paper, we propose a fast and accurate user-specific
gaze estimation framework (FAU-Gaze) as shown in Figure 1.
The contributions of this paper lie on the following aspects:
1) We use Tobii Pro Fusion to dynamically collect a batch
of front camera video data (TobiiGaze) from laptop devices.
TobiiGaze contains 20 subjects with 2 minutes of recording
time for each subject. Subject is allowed to watch anywhere
on the screen, and head posture is not restricted. It is worth
mentioning that the resolution and definition of TobiiGaze are
more realistic in real-life scenarios. 2) We design a vivid



and flexible method for calibration sample collection. The
collected data are cleaned through a multi-rule combination
method. 3) We propose an improved universal gaze estimation
model FA-iTracker (Fast Accurate iTracker). Compared with
previous works, it is more accurate and significantly faster. 4)
We propose a personalized gaze calibrator FPGC (Feature-
based Personalized Gaze Calibrator), which is independent
and supports most general training models with real-time
online training. Working with FA-iTracker, FPGC increases
the accuracy by 36.4% and 33.7% on MPIIFaceGaze and
TabletGaze respectively, and the prediction error on TobiiGaze
is only 1.61 cm.

II. RELATED WORK

The 2D gaze estimation function is specifically manifested
as using the gaze estimation algorithm to estimate the focus
of user’s binocular gaze in real-time, that is, the gaze point
of the user’s eyes on the current two-dimensional plane. This
two-dimensional plane can be a mobile phone screen, a pad
screen, a laptop screen, and TV screen, etc.

Appearance-based gaze estimation. Gaze estimation
methods can be divided into model-based and appearance-
based methods [16]. Model-based methods use external light
sources to detect the characteristics of the eyes [17], [18],
or rely on the establishment of a geometric model of the
eye area [19]–[21]. The appearance-based method [8], [9],
[11], [12] takes the image captured by the camera directly
as input to track the user’s gaze. It will not be affected by
the image resolution and lighting conditions but needs more
specific user training data [7]. Qiong Huang et al. [11] mainly
studied gaze estimation on a tablet and proposed a tablet
gaze algorithm based on multi-level HoG features and random
forest regression. Krafka et al. [8] proposed iTracker. The
model has four image inputs: left-eye image, right-eye image,
face image, and face grid. In addition, they also collected
and released a large public 2D gaze dataset Gaze Capture.
Xucong Zhang et al. [9] believe that the other areas of the
face except the eyes hide important information that assists
the gaze estimation problem. They used the complete face
image as the input of the neural network, added the spatial
weighting mechanism to the classic CNN network structure,
and achieved good results. Junfeng He et al. [12] improved
iTracker and proposed a SAGE model structure. The model
loses the input of the face grid and only relies on the eye
image and eye region landmark, and the left eye image is
mirrored and flipped horizontally to make it easier to share
weights. Compared with iTracker, the model greatly improves
the inference speed.

Personalization calibration method. Among the
appearance-based methods, some studies [8], [12], [22]–
[25] have proved that personalized calibration methods
can further improve the accuracy of gaze estimation. The
personalized calibration methods are suitable for both 2D and
3D gaze evaluation. Krafka et al. [8] used calibration as a
post-processing step in iTracker, using a simple SVR model
to train the calibration samples of a specific person while

keeping the weights of the rest of the network unchanged.
Finally, the dimension of the input SVR model is 128. The
accuracy of the model is higher when 13 correction points
are used, but the performance is poor when only 4 correction
points are used. Junfeng He et al. [12] proposed a supervised
and personalized method using a small number of labeled
calibration points (≤5), and also proposed an unsupervised
method based on a heterogeneous teacher-student network
with a small number of users unlabelled, and the embedding-
based few-sample learning method is trained to improve
the accuracy of gaze estimation. And each user only needs
2-5 calibration points. The few-shot method is also used
in [26], and additional training samples are generated by
synthesizing the eye image of the gaze redirection from the
existing reference samples, thereby improving the adaptive
ability of gaze estimation. Park et al. [22] used an encoder-
decoder structure to learn a latent representation composed
of appearance, gaze, and head pose and used a meta-learning
algorithm (MAML) [27] to train a gaze estimator for a small
number of specific populations. This allows the model to be
better generalized to new personnel. And the model needs
calibration points (<9) to be well adapted. Liu et al. [23]
used the bias elimination method to achieve personalization,
using a differential neural network to estimate the difference
in the gaze direction of the two images. Only in this way can
it be guaranteed that the subtraction operation can eliminate
the deviation. During the test phase, a small number of
calibration points (≤9) are required.

Considering that the gaze deviation is related to people, the
Tobii team proposed in their 2019 paper [24] to use the ID
information of the sample to learn the deviation in training.
The essence of this method is calibration parameters, and
the specific implementation is that assign a 6-dimensional
parameter vector to each person as the calibration parameters.
Yunyang Xiong of the University of Wisconsin-Madison also
proposed a similar idea in the CVPR 2019 paper [25]. They
decompose the gaze estimation into a fixed component and a
random component related to people.

Gaze dataset. We introduce several existing representative
2D gaze estimation datasets: 1) The MPIIFaceGaze dataset
[15] collected 15 subjects in the real environment of a laptop,
and its features such as illumination and eyes have significant
diversity. 2) The TabletGaze dataset [11] is characterized by
significant head posture changes. This dataset records the
video taken by the front camera when 51 subjects are holding
a tablet. Each subject has 4 different postures and provides
a total of 35 gaze points. 3) The advantage of GazeCapture
dataset [8] over MPIIFaceGaze and TabletGaze is that the
number of participants is larger, with a total of 1474 partici-
pants. The dataset provides 13 fixed point positions (according
to the device direction) and the use of crowd-sourcing methods
overcomes the high cost and lack of data changes.

The above datasets all have high image resolution, and
they all give subjects a fixed gaze point. However, in actual
situations, the user’s gaze may be non-fixed, and the front
camera of the device may have a shooting effect. It is vague,



Fig. 2. The network structure of FA-iTracker.

and there is no such data as a training set, so we used Tobii
Pro Fusion to collect a batch of video data (TobiiGaze) on
HP Windows 10. The front camera of the device has a low
resolution and low definition. We hope that when it is used for
gaze estimation in real situations, it will not be significantly
different from the performance on the dataset.

III. FAU-GAZE

The general working process of FAU-Gaze is shown in Fig.
1. FAU-Gaze preprocesses the data before training through
face detection and landmark detection. The input of prepro-
cessing is the original image of the current frame, and the
output is the face image, the left eye image, and the right eye
image, and they are used as the three inputs for the next stage
of gaze estimation.

A. FA-iTracker

Fig. 2 illustrates the model structure of FA-iTracker. FA-
iTracker has three inputs: face image, left eye image, and right
eye image. We use three identical and independent CNNs to
extract features from the three inputs respectively. FA-iTracker
is an improvement of iTracker [8] with faster speed and
higher accuracy. The improvements include: 1) Relationship
between eyes. Compared with iTracker [8] and SAGE [12], we
learn the hidden features of the two eyes more deeply, because
eye information always estimates the gaze most importantly.
We give priority to the independent study of the two eyes
and consider the relationship between them, and then learn

together. 2) Two categories of eyes. We also embed an eye
classifier layer (EyeL clf, EyeR clf) into the eye network,
and use the eye class model to determine whether the input
eye image (left eye image, right eye image) is positive or
negative: positive means that the image is judged to be an
eye picture, and the negative category means that the image is
judged to be a non-eye picture. The final output probability of
two eyes classification (0-1): eyeL prob, eyeR prob. These two
probabilities will not have any impact on FA-iTracker but will
be used as input for the next stage of personalized calibration.
3) Output normalization. We pay more attention to the
position where the gaze falls on the screen, and we don’t even
need to know the position beyond the screen size. Therefore,
the output of the FC2 layer of the model is normalized to the
range of 0-1 using the sigmoid function, and then the real gaze
position (x, y) is calculated according to the real screen size.

The model parameters of FA-iTracker are much smaller
than iTracker [8]. The size of the three inputs of the model
is 224×224, and the filter size / number of kernels of the
convolutional layers are:

• CONV-F1,CONV-EL1,CONV-ER1: 11×11/32
• CONV-F2,CONV-EL2,CONV-ER2: 5×5/48
• CONV-F3,CONV-EL3,CONV-ER3: 3×3/96
• CONV-F4,CONV-EL4,CONV-ER4: 1×1/16

The sizes of fully-connected layers are: FC-F1: 64, FC-F2:
32, FC-EL: 64, FC-ER: 64, FC-EYE: 64, EyeL_clf-FC1,
EyeR_clf-FC1: 32, EyeL_clf-FC2 / EyeR_clf-FC2:



Fig. 3. The personalization calibration of FAU-Gaze.

2, FC1: 128, FC2: 2.
FA-iTracker is an end-to-end CNN-based model. But be-

cause of the need to integrate the two-class structure of
the eye, during training, we give priority to training the
gaze estimator, and specify the node name of the four im-
portant features (corresponding to the Figure 2) during the
training process conv face: 7×7×16, conv eyeL: 7×7×16,
conv eyeR: 7×7×16, logits:2, so that it can be used directly
in the subsequent calibration process. Waiting for the training
to be completed before proceeding to the eye class training. At
this time, only the EyeL clf and EyeR clf layers are trained,
and the remaining network weights are fixed. In the end,
our model can realize gaze estimation and eye estimation
classification without any influence on each other.

B. Personalization Calibration

The personalized calibration part of FAU-Gaze includes a
calibration sample data acquisition system and a calibrator
FPGC. When the user visits for the first time or performs
calibration as needed, FAU-Gaze will perform the calibration
steps, as shown in Figure 3.

First, we use the calibration sample collector to collect user
calibration samples and then use the preprocessing module
to process the data and input the results into FA-iTracker
to get the sample feature conv face, conv eyeL, conv eyeR,
logits, and three output results gaze(x,y), left eye proba-
bility(eyeL prob), right eye probability(eyeR prob). At this

(a) Task 1 (b) Task 2

(c) Task 3 (d) Task 4

Fig. 4. Tasks of the calibration sample collector.

time, the three output results are input to the calibration
sample filter, and after the data is cleaned in a multi-rule
combination method, the final effective calibration sample
features conv face, conv eyeL, conv eyeR, logits are retained.

After obtaining effective calibration samples, we use the
sample features and label (ground truth) to train a user-
specific personalized calibrator online, and the final output
gaze position (x, y) is close to the user’s real gaze position.

1) Acquisition of Sample Data: Below we will separately
explain the specific implementation process of the calibration
sample collector and the calibration sample filter.

Calibration sample collector: We designed four different
calibration tasks, including static and dynamic. The static
method is similar to [8], [12], while the dynamic method [28]
refers to moving the calibration point on the screen, and at the
same time, dynamically collecting the user’s current gaze state
when the user’s gaze is required to follow the target movement
track. This method is more vivid and interesting, and can
also capture the user’s dynamic information. As is shown in
Figure 4, The following four tasks are introduced separately:
1) Rectangular task 1. The movement direction of the small
planet is clockwise, starting from the upper left corner, moving
around the rectangle at a uniform speed. The user only needs
to follow the moving planet closely. 2) Rectangular task 2.
Same as task 1, but the starting point of the movement of the
small planet is the lower right corner. The user only needs
to follow the moving planet closely. This is because the data
collected in task 1 may be invalidated by the data filtering rules
at some edges, and taking another corner point as the starting
point of the movement can ensure that relatively complete edge
point data can be collected. 3) Circular task. The movement
direction of the small planet is clockwise, and it moves in a
circle at a uniform speed. The user only needs to follow the
moving planet closely. This task can collect some non-edge
data. 4) Timed task. Small planets will appear at 9 designated
points. When one point is lit, no other points will appear. At



Fig. 5. The FPGC network architecture.

each location, the small planet will light up for 3-5 seconds.
This is to collect some corner points.

Calibration sample filter: The key to filtering is to de-
termine whether the user is paying attention to the moving
target on the screen and to filter out valid data for the next
stage of correction training. We will adopt a multi-rule joint
data cleaning method. The four rules are introduced below:
1) Face detection + facial landmark detection + FA-iTracker:
judge whether a pair of valid eyes can be detected in the
current frame, the threshold of eye classification probability is
0.35, and discard samples with a threshold value of less than
0.35. 2) Refer to [28] to calculate the correlation coefficient
between the result sequence of FA-iTracker inference and
the target point sequence. We use 1-2 seconds as the time
sliding window length. If the calculated correlation coefficient
is greater than 0.3, the collected sample sequence is considered
to be a valid sequence. 3) Specify a distance threshold of 8
cm, if the euclidean distance between FA-iTracker’s inference
result and the real target is greater than 8 cm, the frame sample
is considered invalid. 4) Discard fuzzy samples. For fixed-
point tasks, we discard samples that are about 0.5-1 seconds
in the head movement transition phase to avoid introducing
misjudgments. Because it takes some time for people to react
when the highlights are switched. For other tasks, refer to [28],
discard the samples of the first 0.8 seconds and the last 0.2
seconds of the task.

2) FPGC Model Architecture: The calibration process in
[8] only adjusts the weight of the last layer of the general
model, which will lose the previous user characteristic infor-
mation. We propose a feature-based personalized calibrator
FPGC. The features here include face features (conv face), left

eye features (conv eyeL), and right eye features (conv eyeR).
They can not only identify each user but also have uniqueness.
Adding these features to the calibration process can make
better use of specific information about the user’s face and
eyes and provide more help for gaze correction.

Our calibration model is separated from the general model,
which makes the calibration process more room to play. It
is based on CNN. It is simple, fast, and supports end-to-
end training. In the process of implementing FPGC, we con-
ducted many experiments. First, we proposed the V1 version
named FPGC-FC, which used some fully connected layers and
achieved good calibration results. Then considering that the
user’s feature information is presented in the form of images,
and CNN is more conducive to extracting user features, so we
then propose the V2 version. Compared with the V1 version,
it only adds a few layers of CNN, and we named it FPGC-
CNN, which further improves the accuracy of the personalized
calibration. The two versions are described in detail below.

FPGC-FC: The model structure is shown in Figure 5. First,
directly merge the user feature information (face feature, left
eye feature, right eye feature), and then use the full connection
(User Scope) to predict the user’s specific offset (user offset).
Of course then logits features are input into two different fully
connected layers (Logits Scope, Offset Scope), where Logits
Scope predicts the correction result of the gaze (calib logits),
which corrects the general model’s gaze output logits, and Off-
set Scope predicts the correction of the gaze offset (calib off),
it predicts an error offset. Using two correctors has a more
powerful correction ability. Parameter settings: FC1: 1024,
FC2: 2, FC-L1: 2048, FC-L2: 2, FC-O1: 2048, FC-O2: 2.

FPGC-CNN: After merging the user feature information,



Fig. 6. Eye image five-fold data enhancement.

first use CNN to extract deeper features, and then use the same
structure as FPGC-FC, as shown in Figure 5 after adding CNN
Scope. Parameter settings: CONV1: 5×5/256, CONV2: 3×3/16,
CONV3: 3×3/128, CONV4: 3×3/16.

IV. EVALUATION

A. Evaluation Setup

1) Data Preparation: We use three datasets in this paper:
MPIIFaceGaze, TabletGaze, and TobiiGaze. MPIIFaceGaze
has a total of 15 subjects, containing about 36,000 images, and
uses laptops of various screen sizes. Among the 51 subjects of
TabletGaze, there are video recordings of 40 available subjects.
We parsed the videos according to 35 gaze points. The screen
size of the tablet used is (22.62 cm, 14.14 cm). TobiiGaze
included 20 subjects, and each subject recorded a video for
2 minutes. A total of 41,000 images were produced after
processing. The screen size of the HP Windows 10 device
used was (29.4 cm, 16.5 cm). In order to make full use of
the data set, we separated the left eye from the right eye in
the face pictures, to enhance the data we make five-fold eye
images respectively, as shown in Figure 6.

2) Evaluation Metric: In order to evaluate our model
accurately and fairly, we use the euclidean distance evaluation
index to measure the error between the ground-truth and the
estimated position of gaze. Taking into account the differences
in screen size and using the distance between phones, tablets,
and laptops, we have shown the evaluation results of two
different devices, tablets, and laptops, including the evaluation
results of the uncalibrated model and the final evaluation
results after calibration.

3) Implementation Details: We use TensorFlow to imple-
ment all CNN models. When training FA-iTracker, the batch
size is 144, the Adam optimizer is used for 100,000 iterations,
the initial learning rate is 0.001, and after every 20K iterations,
the learning rate decay strategy is adopted, and the decay rate
is 0.1. When training FPGC online, we use the min batch
training method with a batch size of 64. The initial learning
rate is 0.0001, and after about 300-500 iterations, the training
is completed.

B. Evaluation Result

1) MPIIFaceGaze: First, we randomly divided 15 subjects
into 14 for training and 1 for testing. It can be seen from Table
I that FA-iTracker reduces the average error from 4.57 cm
(iTracker) and 4.20 cm (Full-face) to 4.02 cm. After FPGC-FC
calibration (9 calibration points), it reduces to 2.51 cm. After

TABLE I
EVALUATION RESULTS ON THE MPIIFACEGAZE DATASET

Model # of pts
Laptop

(ME in cm)
iTracker [8] 0 4.57
Full-Face [9] 0 4.20

FAU-Gaze

FA-iTracker 0 4.02

FA-iTracker+
FPGC-FC

3
5
9

3.58
2.92
2.51

FA-iTracker+
FPGC-CNN

3
5
9

3.17
2.57

2.22 (-36.4%)

Fig. 7. Comparison of FA-iTracker and iTracker.

FPGC-CNN calibration (9 calibration points), it is greatly
reduced to 2.22 cm. And we give the accuracy change process
under a different number of calibration points: FPGC-FC drops
from 3.58 m (3 calibration points) to 2.92 cm (9 calibration
points) and then down to 2.51 cm (13 calibration points),
FPGC-CNN dropped from 3.17m (3 calibration points) to
2.57 cm (9 calibration points) and then down to 2.22 cm (13
calibration points).

Then, we divided 15 subjects into 10 for training and 5
for testing. Figure 7 shows the experimental results. It can
be seen intuitively that the average error of FA-iTracker is
slightly lower than that of iTracker, while the error after
calibration by FPGC-CNN significantly lower than iTracker-
SVR-random [8], iTracker-SFO [12], finally reduced to 2.48
cm (9 calibration points).

2) TabletGaze: Table II shows the experimental results of
dividing 40 subjects into 32 for training and 8 for testing on
TabletGaze. It can be seen that for the uncalibrated model, FA-
iTracker is the best performer. It changes the average error
from 3.63 cm (MPIIGaze), 3.17 cm (TabletGaze), and 3.09
(iTracker) are reduced to 2.91 cm. For the calibrated model,
13 calibration points are also used. FPGC-FC and FPGC-CNN
reduce the average error from 2.58 cm (iTracker-SVR) to 2.01
cm and 1.71 cm. And the error performance of FPGC-FC and



TABLE II
EVALUATION RESULTS ON THE TABLETGAZE DATASET

Model #of pts
TabletGaze
(ME in cm)

MPIIGaze [7] 0 3.63
TabletGaze [11] 0 3.17

iTracker [8] 0 3.09
iTracker-SVR [8] 13 2.58

FAU-Gaze

FA-iTracker 0 2.91

FA-iTracker+
FPGC-FC

3
5
9

13

2.87
2.46
2.26
2.01

FA-iTracker+
FPGC-CNN

3
5
9

13

2.77
2.02
1.85

1.71 (-33.7%)

TABLE III
EVALUATION RESULTS ON THE TOBIIGAZE DATASET

Model TobiiGaze (ME in cm)
Full-Face [9] 4.93

TabletGaze [11] 4.18
MPIIGaze [7] 4.02

SAGE [12] 4.36
iTracker [8] 3.94
FA-iTracker 3.83

FPGC-CNN when the number of calibration points is 3, 5, 9,
and 13 are respectively given in the table.

3) TobiiGaze: We divided its 20 subjects into 18 for
training and 2 for testing. These 18 will be jointly trained
with MPIIFaceGaze and TabletGaze, and will be tested on the
remaining two. We respectively give the comparison results
of the uncalibrated model and the calibrated model. Table III
shows the evaluation results of FA-iTracker and other uncal-
ibrated models on the TobiiGaze dataset. It can be seen that
FA-iTracker performs best, with an average error of 3.83 cm.
However, these uncalibrated models cannot meet the actual
needs of TobiiGaze, which explains the impact of errors caused
by low resolution and low definition in the actual situation, and
once again proves the importance of personalized calibration.
Table IV shows the evaluation results of the FPGC and other
calibration models SVR [8], SFO [12] on the TobiiGaze data
set at 9 and 13 calibration points respectively.

We performed calibration experiments on three uncalibrated
models of iTracker, SAGE, and FA-iTracker. The experimen-
tal results show that SVR has a limited ability to improve
accuracy, and its performance is unstable. The error of the
FA-iTracker model after SVR calibration can only be reduced
to 2.98 (9 calibration points) and 2.96 (13 calibration points).
SFO’s performance is slightly better than SVR, but when the
accuracy of the uncalibrated model is low, it can’t play a big

TABLE IV
COMPARISON OF FPGC AND CALIBRATION MODELS ON TOBIIGAZE

Model #of pts
TobiiGaze

(ME in cm)

iTracker [8]

iTracker-SVR 9
13

2.81
2.71

iTracker-SFO 9
13

2.77
2.46

iTracker+
FPGC-FC

9
13

2.04
1.79

iTracker+
FPGC-CNN

9
13

1.73
1.58

SAGE [12]

SAGE-SVR 9
13

3.13
3.02

SAGE-SFO 9
13

3.02
2.55

SAGE+
FPGC-FC

9
13

2.04
1.88

SAGE+
FPGC-CNN

9
13

2.01
1.80

FAU-Gaze

FA-iTracker+
SVR

9
13

2.98
2.96

FA-iTracker+
SFO

9
13

2.67
2.39

FA-iTracker+
FPGC-FC

9
13

2.09
1.76

FA-iTracker+
FPGC-CNN

9
13

1.76
1.61

role. In the SAGE model, SFO only reduces the error to 3.02
(9 calibration points), and 2.55 (13 calibration points).

FPGC can provide higher performance for any uncalibrated
model, even in the case of low accuracy of the uncalibrated
model, it can also reduce the error to less than 2 cm. In the
iTracker model, FPGC-FC reduces the average error to 2.04
cm (9 calibration points), 1.79 cm (13 calibration points), and
FPGC-CNN further reduces the average error to 1.73 ms (9
calibration points), 1.58 cm (13 calibration points). In the
SAGE model, FPGC-FC reduces the average error to 2.04
cm (9 calibration points), 1.88 cm (13 calibration points),
FPGC-CNN reduces the average error to 2.01 cm (9 calibration
points), 1.80 cm (13 calibration points). In the FA-iTracker
model, the error is reduced to 2.09 cm (9 calibration points)
and 2.00 cm (13 calibration points) after correction by FPGC-
FC, after correction by FPGC-CNN, better results have been
achieved, and the error was reduced to 1.76 cm (9 calibration
points), 1.61 cm (13 calibration points). Experimental results
prove that FPGC is independent of the uncalibrated model, and
it can provide higher performance for any calibrated model.

Under normal circumstances, the effect of 13 calibration
points is the best, which shows that the personalized cali-
bration process based on fine-tuning is still data-driven, its
quantity and quality are very important, so it requires a more
cumbersome data collection process. We compared the effects



TABLE V
INFERENCE TIME OF FAU-GAZE ON CPU

FAU-Gaze Inference time on CPU (ms)
FA-iTracker 7-8

FPGC FPGC-FC <1
FPGC-CNN 3-3.5

Total 7-11.5

of different calibration tasks on the results, using 9 and 13
calibration points as the standard: (1) Among the four tasks,
any execution of one of them can achieve the accuracy of
9 calibration points. (2) If any two tasks are performed, the
accuracy of 13 static calibration points can be achieved, and
almost has reached the upper limit of calibration. Therefore,
our data collection system solves this problem to a large extent.
While facilitating the collection of more data, it also brings a
better experience for users.

C. Run-time Performance

FAU-Gaze framework satisfies real-time requirements on
CPU devices, Table V shows the inference speed of each part
of the FAU-Gaze frameworks on CPU. It can be seen that it is
a fast framework. The online training times of FPGC-FC are
5 s and the inference speed is less than 1 ms, while the online
training times of FPGC-CNN are 30-40 s and the inference
speed is 3-3.5 ms.

V. CONCLUSION

In this paper, we propose a lightweight and robust gaze
estimation framework FAU-Gaze. In particular, we focus more
on the personalization problem and propose a CNN-based end-
to-end personalized calibration model FPGC, which effectively
eliminates the user’s gaze deviation to a large extent. The
average error on the MPIIFaceGaze and TabletGaze datasets
is reduced to 2.22 cm and 1.71 cm respectively, and the real-
time inference time is 7 ms-11.5 ms. In addition, the TobiiGaze
collected by us solves the problem of low-resolution and low-
definition of the front camera in actual situations. In the end,
FAU-Gaze’s prediction error on TobiiGaze is reduced to 1.61
cm. We believe that FAU-Gaze makes it possible to popularize
gaze estimation.
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