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ABSTRACT 

As urbanization accelerates, the rapid increase in urban populations and vehicle numbers poses unprecedented challenges 
to city traffic. The demand for intelligent transportation systems, a key component of smart city construction, is growing 
day by day. This system is a highly integrated interdisciplinary field that combines complex computer algorithms, which 
to some extent limits its extensive application. The emergence of large language middleware has reduced the deployment 
barriers for related applications. This article proposes an innovative intelligent transportation system that combines a large 
language model (LLM) with Amap API through LangGraph, providing strong support for urban traffic. This system not 
only assists users in making travel decisions through natural language dialogue based on the superior reasoning and 
planning capabilities of LLM, but also enhances the semantic understanding ability of LLM by constructing a graph 
structure through LangGraph,it improves the capture capability for urban traffic tasks and implements a self-feedback 
mechanism for the large language model.This innovative approach offers a more convenient and efficient method for the 
application of large language models in the field of Intelligent Traffic System. 
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1. INTRODUCTION 
Transportation has been an essential part of human history, and with the advancement of computer technology, using 
computers to assist humans in making optimizations and decisions in the field of intelligent transportation has become a 
revolutionary approach, providing a new direction for improving human life. In areas such as traffic simulation, route 
planning, and intelligent scheduling, researchers are continuously applying new technologies to enhance the efficiency and 
convenience of transportation systems. 

The development of artificial intelligence (AI), especially its combination with natural language processing, has brought 
unprecedented opportunities to the field of intelligent transportation. Large language models like ChatGPT[1] are leading 
a technological revolution worldwide. Zheng et al.[2] explored the potential applications of large language models (LLMs), 
particularly ChatGPT, in intelligent transportation systems in their study. OpenAI[3] and TrafficGPT[4] both explored the 
viability of Large Language Models as a control agent that selects actions from the action space,to assist humans in making 
traffic control decisions through natural language dialogue. 

This article introduces an innovative dialogue framework for smart city transportation attributes, built on the LangGraph 
middleware and achieving seamless integration with the Amap API interface. Through this integra- tion, we have provided 
powerful tools for large language models to clearly identify and solve specific problems.By using the LangGraph, we have 
integrated tools for LLM and constructed a network representing the agent system with Graph to help LLM understand 
and analyze problems more effectively. We propose an LLM agent for intelligent transportation based on LangGraph, 
primarily responsible for handling city map interaction tasks via the Amap API. In urban traffic tasks related to route 
planning, the current mainstream approach involves training Neural Network Models with a large amount of traffic data, 
requiring different network structures for different tasks and consuming substantial training resources. Compared to 
conventional intelligent transportation systems combined with LLMs, our use of the LangGraph structure offers greater 
scalability. It realizes the issues of agent loop calling and coordination between multiple agents, making it the simplest 
way to implement LLM applications today. In the following parts of this article, we will delve into the architectural design, 
implementation methods, and achievements of this framework, demonstrating how it efficiently combines large language 
models with the field of smart city transportation. 
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2. RELATED WORK 
Since the release of ChatGPT, numerous new middleware projects for large models have emerged, aiming to simplify the 
process for developers to build AI applications based on large language models (LLMs). Among them, Langchain[5] 
provides interfaces for multi-model access, prompt encapsulation[6] and multi-data source loading, greatly simplifying the 
construction of AI applications. Langchain, with its adaptability to multiple models, ease of integration, and strong support 
for mainstream programming languages like Python, has quickly gained popularity among developers. 

2.1 LangGraph 

LangChain connects large models with external interfaces by constructing a chain structure. The LangChain Expression 
Language (LCEL) is a simple representation method provided by LangChain for assembling chains. Chains assembled in 
this way can automatically acquire a series of capabilities such as batch processing, streaming output, parallel processing, 
and asynchronous processing. Additionally, chains can be further assembled into more complex chains and agents through 
LCEL. However, chains constructed in LangChain do not have looping capabilities and cannot be called in a loop during 
inference. 

Therefore, LangGraph is used to deal with such problem. It is not an independent framework from LangChain but an 
extension library built on top of LangChain. LangGraph can coordinate multiple chains, agents, and tools to work together 
to complete input tasks, and supports more refined control of looping and agent processes in LLM calls. The 
implementation of LangGraph involves using a new form, the StateGraph, to construct the previously black-boxed calling 
process based on AgentExecutor. By precisely defining the details of LLM-based tasks through graphs, the final application 
is compiled and generated based on this graph. During task execution, the state of graph is maintained and continuously 
updated based on node transitions. 

The construction process of LangGraph includes defining nodes, edges, and state schema. It simplifies state management 
and interruption handling, enabling developers to focus on defining nodes, edges, and state architecture. StateGraph is the 
fundamental class in LangGraph that represents the entire state diagram. It stores the states of various variables during 
workflow execution, represents the message format for communication between nodes in the graph, and reflects the 
execution process and states of the graph. Once a node is executed, it updates the state of the graph. The state of LangGraph 
is updated during the execution of the graph and is shared with all edges and nodes. This state defines the core state object 
that is updated over time, receives operations and attribute definitions, and is updated by nodes; these state information are 
transmitted between each node. Each node updates this state information based on its own defined logic. 

2.2 Amap API 

Amap is China’s leading provider of digital map content, traffic, and location service solutions. The open API interfaces 
provided by Amap offer a wide range of practical tools for handling maps and adding content to maps via various services. 
It provides geographic data service interfaces such as the geocoding or reverse geocoding API, route planning API and 
search API. These interfaces access remote services via internet protocols, enabling functionalities like the conversion 
between structured addresses and latitude/longitude, as well as the development of route planning features. These services 
can be used to integrate different applications, allowing developers to provide users with rich map-related functions such 
as navigation, route planning, and geographic location queries. The traffic agent returns information by making real-time 
calls to the Amap API, which uses real-time traffic status, ensuring that the returned information is reliable. 

3. IMPLEMENT AMAP CALL ON LANGGRAPH 
3.1 Tool construction 

The tools we defined are constructed based on the API interfaces provided by Amap. We have encapsulated functions for 
city area encoding, weather queries, latitude and longitude queries, area positioning, walking route planning, bus route 
planning, and car route planning. Additionally, we integrated the Baidu search tool into our system through an app created 
using Baidu’s APPbuilder, enabling us call the Baidu search tool.Following the same execution flow, there are different 
augmented tools that could help users with various requirements as presented in Table 1. 

We need to follow certain requirements when building tools.We must ensure the effectiveness of the API interfaces to 
prevent errors caused by failing to retrieve relevant information due to interface failures. When defining a tool, we need to 
use the tool decorator to indicate the creation of the tool’s invocation function. The comments preceding the function 
statements describe the tool. These descriptions are provided as prompts to the large model when binding the tool, enabling 
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the model to understand the tool’s functionality. Therefore, when defining prompts, it is important to consider that the 
output of one tool might be the input for another during the model’s reasoning process. The prompts should be written 
consciously and in a standardized manner to facilitate the model’s inference and tool invocation. Listing 1 illustrates an 
example of building a utility function. 

Listing 1. The structure of the geo tool. 

 

Table 1. A list of augmented tools. 

Augmentation Name Description 

geoGet Used to obtain the latitude and longitude of a city 

weatherGet Obtain weather information through urban area coding 

DistrictCoding Obtain urban area coding 

walkRoute Pedestrian route planning 

driveRoute Driving route planning 

busRoute Bus travel planning 

staticMapget Obtain a map labeled with the corresponding location name 

busRouteMapget Obtain the queried bus route map 

baidu search Implementing Baidu Search Function through Baidu App Builder 

3.2 LangGraph structure construction 

The graph built with langgraph is shown in Figure 1. During the process of building structure the LangGraph, the messages 
between nodes are typically formatted as a list of basemessage. The data returned after each node’s execution is 
encapsulated into a base message and wiil be appended to the message list as the latest entry. 

The llm agent node is an agent node that calls the LLM bound to the above tool. LLM determines whether to call tool 
based on system prompt and user messages. If necessary, it returns an Aimessage that includes the input parameters, tool 
name, and tool ID. Message will pass the message to the action node, which is the ToolNode, through the edge, and the 
tool calls will be executed based on the tool ID, such as generating coordinates through the geoGet tool. After the tool 
executes and returns ToolMessage, which appends to state, the state message continues to return to the llm agent node. 
Llmaagent decides whether to complete the task or continue calling the tool until the task is completed. 

tool 

def geo ( c i t y : s tr , add : s t r )−> s t r : 

 

 

the  beg inn ing   and  l a t i t u d e  at  the  end””” 

u r l = ’ h ttps : // r e s t a p i . amap . com/ v3 / geocode / geo ? parameters ’ k e y 
p r i v a te = ’ API−KEY ’ 

param ={ 

’ key ’ : k e y p r i va 
te , ’ address ’ : add , 
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Figure 1. Execution flowchart after receiving a natural language task. 

4. EXPERIMENT 
In order to demonstrate the framework’s efficiency in handling various complex transportation tasks, we have provided an 
example that utilizes ChatGPT (gpt-3.5-turbo) as the language model (LLM) and employs LangGraph to direct the 
operation of the LLM. 

As an AI traffic assistant, it needs to engage in natural language conversations with users, execute basic tasks based on 
user instructions, and support multi-turn dialogues. 

In the experiment, we will use multiple different large language models to compare their understanding and parsing abilities 
when handling relevant issues in our system. The selected models include gpt-3.5-turbo, glm-4, moonshot, and qwen-max, 
each of which has advantages in multi-language support, contextual understanding, long text processing, and multimodal 
interaction. We categorize the problems based on the complexity of user input into two types: single-tool call problems 
and multi-tool call problems. Single-tool call problems require the large language model to parse the user’s information 
once, and call the appropriate tool to complete the task. Multi-tool call problems require the model to parse and call multiple 
tools as needed to complete a series of consecutive subtasks. In the experiment, we conducted more than 20 times with 
each large language model for each type of tool-specific problem. 

The experimental results are shown in Figure 2. In the figure, we present evidence using three different evaluation 
dimensions displayed on a bar chart. The x-axis represents the large language models used, with the two types of tool 
invocation problems compared side by side. Based on the y-axis, we can compare the percentage values of correct results 
returned by each model. 

We can observe that gpt-3.5-turbo, glm-4, and qwen-max demonstrate similar levels of understanding and parsing ability 
when addressing problems that require only a single tool invocation. However, when dealing with problems that require 
multiple tool invocations, the differences between these models become more pronounced.  

 
Figure 2. Comparison of lateral performance of different large models. 
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During the experiment, we found that gpt-3.5-turbo performed the best in handling multi-tool invocation problems. It calls 
tools one by one based on each specific need, rather than calling all potentially required tools at once. Moonshot, on the 
other hand, tends to call multiple tools simultaneously instead of sequentially. In contrast, gpt-3.5-turbo’s ability to flexibly 
call tools based on actual needs improves its problem- solving efficiency. Qwen-max has some issues with tool invocation 
because it does not automatically include the tool id, re- quiring appropriate adaptations in the code to return correct results. 
Although glm-4 has good comprehension capabilities, it requires very clear system prompts and tool descriptions; 
otherwise, ambiguities can arise, pre- venting task completion. Overall, domestic models exhibit weaker understanding 
and generalization capabilities in multi-tool invocation tasks, resulting in lower success rates. 

In comparison with other traffic-related methods, we selected Open-Ti[3] and TrafficGPT.[4] Under the same conditions, 
using ChatGPT as the base large language model, we compared the accuracy of correct responses to relevant questions 
within their respective domains across the three methods. As shown in the Figure 3, our method significantly outperforms 
the baseline methods in terms of accuracy. 

 
Figure 3. Comparison with Open-Ti and TrafficGPT in terms of success rate. 

5. CONCLUSION 
In summary, this study implemented a tool based on LangGraph that combines Amap's API with large language model, 
integrating the contextual understanding capabilities of the language model with traffic-related tools to enhance its 
functionality. This combination allows for question answering and solutions related to smart city traffic. By incorporating 
Amap’s API, the tool improves the large language model’s ability to analyze specific problems, ensuring the reliability 
and accuracy of its responses. Additionally, it facilitates the intelligent deconstruction of complex tasks, leveraging the 
parsing capabilities of the large language model to gradually complete these tasks. Through natural language dialogue, this 
tool plays a key role in assisting humans in making traffic decisions. 

During the experiments, we found that due to some compatibility issues, the parsing capabilities of different large language 
models were not fully realized when relying on the LangGraph structure. However, this is not due to the model’s inherent 
limitations but rather a temporary technical issue. In this agent, only some basic functions are currently bound, and more 
complex functions have not yet been implemented. Additionally, due to reliance on Amap’s API, some of the interfaces 
provided by Amap have traffic limitations and cannot be called continuously. In the future, functionalities can be 
implemented by locally deploying a large model, providing data through Retrieval-Augmented Generation (RAG) 
methods, or fine-tuning the large model. Moreover, due to LangGraph’s strong extensibility, multiple agents can be used 
to achieve different functions independently and collaborate with each other, further enhancing its problem-solving 
capabilities. 
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