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IMPORTANCE Myopic maculopathy (MM) is a major cause of vision impairment globally.
Artificial intelligence (AI) and deep learning (DL) algorithms for detecting MM from fundus
images could potentially improve diagnosis and assist screening in a variety of health care
settings.

OBJECTIVES To evaluate DL algorithms for MM classification and segmentation and compare
their performance with that of ophthalmologists.

DESIGN, SETTING, AND PARTICIPANTS The Myopic Maculopathy Analysis Challenge (MMAC)
was an international competition to develop automated solutions for 3 tasks: (1) MM
classification, (2) segmentation of MM plus lesions, and (3) spherical equivalent (SE)
prediction. Participants were provided 3 subdatasets containing 2306, 294, and 2003 fundus
images, respectively, with which to build algorithms. A group of 5 ophthalmologists evaluated
the same test sets for tasks 1 and 2 to ascertain performance. Results from model ensembles,
which combined outcomes from multiple algorithms submitted by MMAC participants, were
compared with each individual submitted algorithm. This study was conducted from March 1,
2023, to March 30, 2024, and data were analyzed from January 15, 2024, to March 30, 2024.

EXPOSURE DL algorithms submitted as part of the MMAC competition or ophthalmologist
interpretation.

MAIN OUTCOMES AND MEASURES MM classification was evaluated by quadratic-weighted κ
(QWK), F1 score, sensitivity, and specificity. MM plus lesions segmentation was evaluated by
dice similarity coefficient (DSC), and SE prediction was evaluated by R2 and mean absolute
error (MAE).

RESULTS The 3 tasks were completed by 7, 4, and 4 teams, respectively. MM classification
algorithms achieved a QWK range of 0.866 to 0.901, an F1 score range of 0.675 to 0.781, a
sensitivity range of 0.667 to 0.778, and a specificity range of 0.931 to 0.945. MM plus lesions
segmentation algorithms achieved a DSC range of 0.664 to 0.687 for lacquer cracks (LC),
0.579 to 0.673 for choroidal neovascularization, and 0.768 to 0.841 for Fuchs spot (FS). SE
prediction algorithms achieved an R2 range of 0.791 to 0.874 and an MAE range of 0.708 to
0.943. Model ensemble results achieved the best performance compared to each submitted
algorithms, and the model ensemble outperformed ophthalmologists at MM classification in
sensitivity (0.801; 95% CI, 0.764-0.840 vs 0.727; 95% CI, 0.684-0.768; P = .006) and
specificity (0.946; 95% CI, 0.939-0.954 vs 0.933; 95% CI, 0.925-0.941; P = .009), LC
segmentation (DSC, 0.698; 95% CI, 0.649-0.745 vs DSC, 0.570; 95% CI, 0.515-0.625;
P < .001), and FS segmentation (DSC, 0.863; 95% CI, 0.831-0.888 vs DSC, 0.790; 95% CI,
0.742-0.830; P < .001).

CONCLUSIONS AND RELEVANCE In this diagnostic study, 15 AI models for MM classification and
segmentation on a public dataset made available for the MMAC competition were validated
and evaluated, with some models achieving better diagnostic performance than
ophthalmologists.
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M yopia is one of the most common causes for irrevers-
ible vision impairment and blindness worldwide,1

with estimates projecting that nearly 5 billion indi-
viduals will be affected by myopia and 1 billion individuals will
be affected by high myopia by 2050.2,3 Patients with high myo-
pia face a heightened risk of sight-threatening complications,
particularly myopic maculopathy (MM).4-6 Accurate identifi-
cation of MM grades is a major clinical and public health need,
as it enables the timely screening, identification, and close
monitoring of individuals with high myopia and MM risk, ad-
dressing issues of underdiagnosis and misclassification.7-11

Moreover, precise MM grading by ophthalmologists facili-
tates targeted health guidance, which aims to prevent or man-
age concurrent complications effectively and mitigate the risk
of blindness caused by MM.

Color fundus photography (CFP) serves as a primary
diagnostic tool for MM, offering rapid, accurate identifica-
tion and a cost-effective solution for initial diagnosis and
large-scale screening of MM12 across Asia,13-15 Europe,16,17 and
other regions.18,19 Given the imperative for timely MM detec-
tion, the integration of artificial intelligence (AI), especially
deep learning (DL), into medical images analysis has emerged
as a promising avenue to enhance screening efficiency and
accuracy.20 Recent DL applications have shown potential in di-
agnosing and screening multiple ophthalmic diseases, includ-
ing retinopathy of prematurity 2 1 -2 3 and diabetic
retinopathy.24-30 Several DL algorithms have been developed
based on CFP for high myopia and its complications,31-35 and
these algorithms may assist accurate and time-efficient screen-
ing and diagnoses of MM in community and primary care set-
tings among individuals with high myopia.36,37

However, major challenges remain in developing robust
DL systems for MM diagnosis, including the scarcity of anno-
tated datasets and limited access to preexisting algorithms for
comparative evaluation.38,39 There are more than 120 pub-
licly available CFP-based datasets worldwide, primarily fea-
turing diabetic retinopathy, glaucoma, and age-related macu-
lar degeneration. However, only 5 datasets include myopia
data, and none are specifically dedicated to MM.40,41 Organiz-
ing competitions and releasing public datasets is an effective
way to attract more attention and research to specific ophthal-
mic diseases. For instance, the volume of competitions fo-
cused on diabetic retinopathy42-44 has led to the develop-
ment of numerous diagnostic algorithms using these datasets.
In contrast, the absence of competitions and public datasets
for MM has resulted in less attention and research dedicated
to this condition, impeding the development and evaluation
of DL algorithms.45,46

To address these challenges, we present a public dataset
for MM diagnosis used in a competition named the Myopic
Maculopathy Analysis Challenge (MMAC). The dataset was an-
notated using the criteria proposed by the META-PM Study
Group.12 Three clinical tasks with corresponding image
labels were provided, including MM classification, MM plus le-
sions segmentation, and myopic spherical equivalent (SE)
prediction.47 The MMAC datasets, algorithms, codes, and
model weights have been made available. Instructions for
downloading these resources are provided in eFigure 1 in

Supplement 1. Researchers can use these resources to further
develop and evaluate different DL algorithms.

Methods
This study arose as part of the 26th International Conference
on Medical Image Computing and Computer-Assisted
Intervention, which was held from October 8 through 12, 2023,
in Vancouver, British Columbia, Canada. Three tasks were de-
fined in MMAC competition: (1) classification of MM, (2) seg-
mentation of MM plus lesions, and (3) prediction of SE. For each
task, a training set and a validation set were provided for com-
petition participants to develop algorithms. The final evalua-
tion and ranking of the algorithms was performed on an inde-
pendent test set, which was not available to participants during
competition. The detailed competition setup and organiza-
tion are provided in eAppendix 1 in Supplement 1. Between May
25, 2023, and August 25, 2023, approximately 120 partici-
pants from more than 12 countries registered for the compe-
tition. At the end of the registration and development period,
9 teams submitted a total of 15 algorithms: 7 for task 1, 4 for
task 2, and 4 for task 3. These algorithms were documented
in 11 papers published in the competition proceedings.48 A sum-
mary of the top 3 algorithms is presented in eAppendix 2 in
Supplement 1. This study was approved by the ethics commit-
tee of Shanghai Sixth People’s Hospital and was conducted in
accordance with the Declaration of Helsinki. Informed con-
sent for inclusion of data was waived due to the data’s retro-
spective nature and prior deidentification of the CFP images.
This study followed the Standards for Reporting of
Diagnostic Accuracy (STARD) reporting guidelines.

Dataset
To enable the development of DL algorithms for MM analy-
sis, we collected 2306, 294, and 2003 images for the 3 tasks,
respectively. These images were from 2 hospitals: Shanghai
Health and Medical Center and Shanghai Sixth People’s
Hospital in China. All the images in the MMAC dataset were
acquired with the Topcon TRC-NW400 nonmydriatic retinal
camera (Topcon Corporation). The annotation for MM classi-
fication followed the criteria of the META-PM Study Group,12

which divided images into 5 categories: (1) no macular le-
sions, (2) tessellated fundus, (3) diffuse chorioretinal atro-

Key Points
Question Can a competition using a public dataset be used to
develop accurate deep learning algorithms for the diagnosis of
myopic maculopathy (MM)?

Findings In this diagnostic study, the ensemble of 15 algorithms
submitted in the Myopic Maculopathy Analysis Challenge (MMAC)
showed better performance than the mean performance of a
group of 5 ophthalmologists in sensitivity and specificity.

Meaning The dataset, deep learning algorithms, and codes
submitted in the MMAC competition facilitate the development
and translation of automated algorithms for diagnosing MM.
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phy, (4) patchy chorioretinal atrophy, and (5) macular atro-
phy. Two junior ophthalmologists, each with more than 5 years
of experience, independently graded the images, achieving a

κ agreement value of 0.910. A senior ophthalmologist with
more than 10 years of experience adjudicated any discrepan-
cies between the 2 junior graders. The annotation for MM plus

Table 1. Characteristics of the Datasets Used for the MMAC Competition

Task

No.

Patient age, mean (SD), y

Sex

Images Patients Eyes % Male % Female
Task 1: classification of myopic maculopathy

Training set

SHMC 990 429 603 52.22 (9.16) 70.4 29.6

SSPH 153 100 133 64.40 (12.38) NA NA

Validation set

SHMC 215 118 160 49.90 (11.42) 70.2 29.8

SSPH 33 22 30 60.42 (12.32) NA NA

Test set

SHMC 783 385 530 46.61 (11.47) 67.0 33.0

SSPH 132 90 118 60.15 (15.55) NA NA

Task 2: segmentation of myopic maculopathy plus lesions

LC

Training set

SHMC 21 19 20 52.81 (11.24) 71.4 28.6

SSPH 42 40 42 60.50 (11.16) NA NA

Validation set

SHMC 5 4 5 43.20 (8.58) 60.0 40.0

SSPH 7 7 7 57.29 (10.63) NA NA

Test set

SHMC 21 19 19 53.48 (7.00) 71.4 28.6

SSPH 25 24 24 61.04 (12.63) NA NA

CNV

Training set

SHMC 5 5 5 48.20 (8.04) 60.0 40.0

SSPH 27 26 27 62.26 (15.58) NA NA

Validation set

SHMC 2 2 2 38.00 (19.80) 50.0 50.0

SSPH 5 5 5 71.20 (9.50) NA NA

Test set

SHMC 4 4 4 50.50 (9.18) 100 0

SSPH 18 17 18 62.67 (20.41) NA NA

FS

Training set

SHMC 21 20 21 57.00 (9.92) 61.9 38.1

SSPH 33 31 33 61.82 (13.11) NA NA

Validation set

SHMC 6 6 6 57.00 (9.88) 83.3 16.7

SSPH 7 7 7 56.86 (6.87) NA NA

Test set

SHMC 20 18 19 50.75 (7.20) 70.0 30.0

SSPH 25 24 25 63.88 (9.77) NA NA

Task 3: prediction of spherical equivalent

Training set

SHMC 992 560 992 53.03 (9.05) 49.5 50.5

Validation set

SHMC 205 118 205 52.37 (8.57) 49.3 50.7

Test set

SHMC 806 448 806 51.99 (8.91) 49.4 50.6

Abbreviations: CNV, choroidal neovascularization; FS, Fuchs spot; LC, lacquer
cracks; MMAC, Myopic Maculopathy Analysis Challenge; NA, not available;

SHMC, Shanghai Health and Medical Center; SSPH, Shanghai Sixth People’s
Hospital.
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lesions segmentation also followed the META-PM Study Group
criteria and included 3 types of lesions: (1) lacquer cracks (LC),
(2) choroidal neovascularization (CNV), and (3) Fuchs spots
(FS). A junior ophthalmologist initially annotated the lesions
and then refined them in consultation with another junior
ophthalmologist. A senior ophthalmologist reviewed and re-
fined the final annotations. The ground truth for the SE pre-
diction task was obtained with the Topcon KR-8900 corneal
curvature computer refractometer (Topcon Corporation). The
characteristics of the MMAC dataset are outlined in Table 1.

Performance of Ophthalmologists
To assess the comparative performance of the algorithms in
this competition against ophthalmologists in MM assess-
ment, a comparison experiment was designed and executed.
Five ophthalmologists, each with a minimum of 5 years of grad-
ing experience, were recruited to independently annotate the
images in the test sets of the MM classification task (915
images) and the MM plus lesions segmentation task (113 im-
ages). These test sets were not disclosed to the participating
teams during the development of their algorithms. All partici-

pating ophthalmologists were thoroughly informed about the
objectives and rationale of the study and voluntarily con-
sented to their involvement. The Shanghai Sixth People’s
Hospital research ethics committee, having reviewed the study
design and procedures, determined that the ophthalmolo-
gists were exempt from providing written informed consent.

Statistical Analysis
The 3 tasks in the MMAC competition had different evalua-
tion metrics. For the MM classification task, the algorithms’
performance was evaluated using quadratic-weighted κ (QWK),
macro F1 score, and macro specificity, where macro averag-
ing meant calculating the metric for each label and then find-
ing their unweighted average.49,50 In addition to these 3 met-
rics used in the competition, we also used macro sensitivity
in this study to evaluate the classification performance of each
algorithm. For segmentation of MM plus lesions, the algo-
rithms’ performance was measured using the dice similarity
coefficient (DSC). For the prediction of SE, the performance of
a regression algorithm was evaluated using the coefficient of
determination (R2) and the mean absolute error (MAE). The

Figure 1. Visualization of Segmentation Results From the Top 3 Algorithms in the Myopic Maculopathy Analysis Challenge (MMAC) Competition

A Fundus image B Algorithm B1 C Algorithm B2 D Algorithm B3

Color fundus images (A) and segmentation results from the first-ranked
algorithm (B), second-ranked algorithm (C), and third-ranked algorithm (D). The
3 horizontal rows are the segmentation results for choroidal neovascularization

(yellow lines), Fuchs spot (blue lines), and lacquer cracks (green lines),
respectively. White lines represent the ground truth.

Research Original Investigation A Competition for the Diagnosis of Myopic Maculopathy by Artificial Intelligence Algorithms

E4 JAMA Ophthalmology Published online September 26, 2024 (Reprinted) jamaophthalmology.com

© 2024 American Medical Association. All rights reserved.

Downloaded from jamanetwork.com by University Town Library of Shenzhen user on 09/27/2024

http://www.jamaophthalmology.com?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamaophthalmol.2024.3707


ranking method in each task of the competition is shown in
eAppendix 3 in Supplement 1. Calculation methods for each
metric are provided in eAppendix 4 in Supplement 1.

Sensitivity and specificity were used to compare the perfor-
mance of DL algorithms and ophthalmologists in the MM classi-
ficationtask.FortheMMpluslesionssegmentationtask,thecom-
parison metric was DSC score. The statistical tests were 2-sided
1-sample t tests for MM classification and 2-sided Mann-Whitney
U tests for MM plus lesions segmentation. A P value less than .05
wasconsideredstatisticallysignificant,andPvalueswereadjusted
for multiple comparisons using the Bonferroni correction. Data
were analyzed using Python version 3.6 and SciPy version 1.5.4
(Python Software Foundation).

Results
Competition Results
Task 1: MM Classification
The quantitative results of 7 submitted algorithms in the MM
classification task are presented in eTable 1 in Supplement 1.
The confusion matrix of each algorithm is shown in eFigure 2
in Supplement 1. The first-ranked algorithm achieved a QWK
of 0.901 (95% CI, 0.878-0.919), an F1 score of 0.781 (95% CI,
0.739-0.819), a sensitivity of 0.778 (95% CI, 0.736-0.818), and
a specificity of 0.945 (95% CI, 0.937-0.953).

Task 2: Segmentation of MM Plus Lesions
The quantitative results for MM plus lesions segmentation are
presented in eTable 2 in Supplement 1. The first-ranked algo-
rithm achieved a DSC of 0.665 (95% CI, 0.619-0.709) for LC seg-
mentation, 0.673 (95% CI, 0.584-0.757) for CNV segmenta-
tion, and 0.841 (95% CI, 0.808-0.868) for FS segmentation,
where the DSC scores for CNV and FS were the best among all
teams. The best performance for LC segmentation was achieved
by the third-ranked team, with a DSC score of 0.687 (95% CI,
0.630-0.741). Visualization of the segmentation results from
the top 3 teams is shown in Figure 1.

Task 3: Prediction of SE
The quantitative results of SE prediction are presented in
eTable 3 in Supplement 1. The first-ranked algorithm achieved
an R2 of 0.874 (95% CI, 0.854-0.889) and an MAE of 0.708 di-
opters (D) (95% CI, 0.662-0.755). The distribution of the pre-
dicted vs actual values in the test set is visualized in eFigure 3
in Supplement 1. The predicted values of the 4 submitted al-
gorithms were within 1 D of the actual values 74.9% (604 of
806), 76.9% (620), 71.6% (577), and 63.8% (514) of the time,
respectively.

Combining Predictions
Ensemble learning, which integrates the outputs of multiple
algorithms, is a powerful approach that combines the strengths
of various models to reduce biases that might arise from a single
model.51,52 The most commonly used strategies include ma-
jority voting, logical OR, and logical AND. The calculation meth-
ods for these model ensemble strategies are described in eAp-
pendix 5 in Supplement 1.

For the MM classification task, the model ensemble re-
sults achieved a QWK of 0.913 (95% CI, 0.897-0.927), an F1
score of 0.804 (95% CI, 0.766-0.841), a sensitivity of 0.801 (95%
CI, 0.764-0.840), and a specificity of 0.946 (95% CI, 0.939-
0.954), as shown in eTable 1 in Supplement 1. These values are
1.2%, 2.3%, 2.3%, and 0.1% higher, respectively, than the best
submitted algorithm. For the MM plus lesions segmentation
task, the model ensemble results achieved a DSC score of 0.698
(95% CI, 0.649-0.745) for LC segmentation, 0.699 (95% CI,
0.609-0.788) for CNV segmentation, and 0.863 (95% CI, 0.831-
0.888) for FS segmentation, as shown in eTable 2 in Supple-
ment 1. For the SE prediction, the model ensemble results, as
shown in eTable 3 in the Supplement, achieved an R2 of 0.883
(95% CI, 0.867-0.897) and an MAE of 0.685 (95% CI, 0.637-
0.729). Compared with the first-ranked algorithm, the en-
semble results showed an improvement of 0.9% for R2 and
0.023 D for MAE.

Comparison of DL Algorithms and Ophthalmologists
The quantitative classification and segmentation results of the
5 ophthalmologists are shown in eTables 4 and 5 in Supple-
ment 1. Visual comparison of the MM classification task for the
algorithms and the ophthalmologists is shown in Figure 2. The
significant test results comparing each algorithm with the mean
performance of 5 ophthalmologists in MM classification are
shown in eTable 6 in Supplement 1. For the MM classification
task, the model ensemble results outperformed the ophthal-
mologists in sensitivity (0.801; 95% CI, 0.764-0.840 vs 0.727;
95% CI, 0.684-0.768; P = .006) and specificity (0.946; 95% CI,
0.939-0.954 vs 0.933; 95% CI, 0.925-0.941; P = .009). For the
MM plus lesions segmentation task, the visual comparison of
the algorithms and the ophthalmologists is shown in Figure 3,
and the results of the significant test are shown in eTable 7 in
Supplement 1. The model ensemble results outperformed the
ophthalmologists in DSC scores for LC segmentation (0.698;

Figure 2. Comparison of Algorithms vs Ophthalmologists
for the Myopic Maculopathy Classification Task
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The model ensemble results achieved higher sensitivity and specificity than
individual algorithms and ophthalmologists.
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95% CI, 0.649-0.745 vs 0.570; 95% CI, 0.515-0.625; P < .001)
and FS segmentation (0.863; 95% CI, 0.831-0.888 vs 0.790; 95%
CI, 0.742-0.830; P < .001). For the CNV segmentation task, the
model ensemble achieved performance comparable to that of
the ophthalmologists. In MM classification and LC and FS seg-
mentation, some participants’ algorithms also outperformed
the ophthalmologists.

Discussion
Complications of pathologic myopia, including MM and re-
fractive errors, pose significant global health challenges. Ac-
curate grading of MM aids in the timely screening, identifica-
tion, and close monitoring of patients at high risk of myopia,
which helps to address diagnostic inadequacies and provide
targeted health guidance.12,53,54 Focusing on these diseases,
we devised an AI competition that integrated the tasks of MM
classification, MM plus lesions segmentation, and prediction
of SE as key refractive metrics. The purpose of this competi-
tion was to catalyze the advancement and refinement of state-

of-the-art DL algorithms for MM analysis, with the dataset,
evaluation pipeline, algorithms, and codes made publicly avail-
able. Researchers can use this dataset to develop DL algo-
rithms, for external validation, and to compare new algo-
rithms with existing ones.

Several studies on myopia and MM have previously been
reported. Tang and colleagues55 validated a DL algorithm
for MM classification using 1395 fundus images, achieving a κ
value of 0.932. They also evaluated the DL algorithm’s perfor-
mance in the segmentation of MM plus lesions, achieving a DSC
score of 0.238 for LC segmentation, but failing to segment CNV
and Fuchs spots. Zheng and colleages56 and Sun and
colleagues57 achieved κ values of 0.836 and 0.938 for MM clas-
sification on 4642 and 714 images, respectively. In this study,
the κ value for MM classification was 0.913 on 2306 fundus im-
ages, and our segmentation of MM plus lesions achieved DSC
scores of more than 0.65. These results are comparable to or
outperform reported results. Varadarajan and colleagues58

trained and validated a DL algorithm for SE prediction using
more than 200 000 images, achieving R2 scores of 0.9 and 0.69
on 2 datasets. In this study, comparable performance for SE

Figure 3. Comparison of Algorithms vs Ophthalmologists for the Myopic Maculopathy Plus Lesions Segmentation Task
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Comparison of algorithms vs ophthalmologists for LC segmentation (A), CNV
segmentation (B), and FS segmentation (C). The dashed line represents the
average dice score of the 5 ophthalmologists. Error bars indicate 95% CIs,

calculated using the bootstrap method with 1000 bootstraps. CNV indicates
choroidal neovascularization; FS, Fuchs spot; LC, lacquer cracks.
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prediction was achieved with an R2 of 0.883, despite using a
smaller dataset. Our DL algorithms achieved comparable or bet-
ter performance across tasks. Previous methods were primar-
ily trained and validated on private datasets, as researchers
lacked public datasets for evaluation. Our released dataset can
bridge this gap. Additionally, compared to these studies, we
also explored model ensemble methods and compared the per-
formance of ophthalmologists with DL algorithms.

The summarized characteristics of the top-performing al-
gorithms in each task of the MMAC competition are listed in
Table 2.59-73 All the participants used DL algorithms as the so-
lution in these tasks. The strategies summarized from partici-
pating algorithms to improve the model performance are pre-
sented in eAppendix 6 in Supplement 1. In addition, we used
a model ensemble approach to integrate the outputs of differ-
ent algorithms submitted by participants and demonstrate the
effectiveness of the model ensemble in improving algorithm
performance. In clinical practice, multiple MM classification
models, each trained locally on data from different centers, can
be integrated into a clinical software platform used by
ophthalmologists. By using model ensemble methods and shar-
ing locally trained models, health care centers can enhance pre-
diction reliability and confidence, thus overcoming barriers to
data sharing.

To evaluate the performance of ophthalmologists in MM
classification and MM plus lesions segmentation, 5 ophthal-
mologists were recruited to annotate images within the test
sets of these 2 tasks. The performance of the DL algorithms was
compared with the ophthalmologists’ mean performance.
Comparison showed that in the MM classification task, the sen-
sitivity and specificity of some algorithms were better than
those of the ophthalmologists. In the MM plus lesions seg-

mentation task, some algorithms for LC and FS segmentation
outperformed ophthalmologists.

The integration of DL algorithms with cost-effective, eas-
ily accessible CFP holds promise as a powerful tool for risk
stratification and the detection of MM and high myopia. Given
the substantial economic burden imposed by uncorrected re-
fractive errors and the heightened risk of vision-threatening
complications, such as myopic CNV, glaucoma, retinal detach-
ment, and macular holes, the application of these algorithms
in MM and high myopia screening could represent a strategic
approach to the early identification of this vulnerable popu-
lation. Subsequently, individuals identified with high myo-
pia or MM should be promptly referred to tertiary eye care fa-
cilities for meticulous examination by specialists, where more
advanced diagnostic modalities like optical coherence tomog-
raphy or fundus fluorescein angiography could be used to
conduct a thorough evaluation and ensure timely interven-
tion in the future. The algorithms presented in the MMAC com-
petition are pertinent for large-scale clinical screening and
epidemiological research using retrospective datasets. The de-
velopment of highly accurate automated classification and re-
fractive error precision systems can enhance research lever-
aging extensive retrospective datasets, particularly when
dealing with preexisting datasets that lack refractive error
information.

Limitations
This diagnostic study has several limitations. First, the data-
set was derived exclusively from Chinese patients and was cap-
tured using a single imaging device. This homogeneity in both
patient ethnicity and imaging technology may limit the gen-
eralizability to other populations and settings, where varia-

Table 2. List and Details of the Top 3 Algorithms in 3 Tasks of the MMAC Competition

Team name Algorithma Scoreb Pretraining weights Architecture Loss function Data augmentation Postprocecssing
fdvts_mm A1 0.8752 ImageNet,59

EyePACS60
ResNet,61 EfficientNet,62

ViT,63 MobileNet,64

LANet64

CE, WCE, FL C, F, R, CJ, GBL,
GS, SP

Ensemble by
averaging

DGUT_luli A2 0.8660 ImageNet Swin Transformer65 AL, CE C, F, autoaugment Ensemble by
averaging

Taco Friday A3 0.8638 ImageNet MobileNetV266 CE C, F, R, CJ, CT, SP, RE,
MU, CM, posterize,
solarize, shear,
brightness

Ensemble by
averaging

fdvts_mm B1 0.7264 ImageNet UNet,67 UNet++,68

DeeplabV3+69
DL, FL C, F, R, CJ, GN Ensemble by

averaging and
logical OR

latim B2 0.7248 ImageNet MANet70 DL, CE F, SSR, RBC, RG, SP,
BL, GD, CD, downscale

TTA

hyeonminkim0625 B3 0.7224 ImageNet Convnext-small71 DL, CE C, F, R, CJ, BL TTA, ensemble
by averaging

latim C1 0.8735 ImageNet EfficientNet72 Smooth L1 F, SSR, RBC, RG, SP,
BL, CD, downscale

Ensemble by
averaging

AIFuture C2 0.8636 DINO73 ResNet5061 MSE F, R TTA

Taco Friday C3 0.8433 None ResNet5061 MSE F, R, CJ, SP, RE, MU None

Abbreviations: AL, ArcFace loss; BL, blur; C, cropping; CD, coarse dropout; CE,
cross entropy; CJ, color jittering; CM, CutMix; CT, contrast; DL, dice loss; DSC,
dice similarity coefficient; F, flipping; FL, focal loss; GBL, Gaussian blur; GD, grid
distortion; GN, Gaussian noise; GS, gray scale; MMAC, Myopic Maculopathy
Analysis Challenge; MSE, mean square error; MU, MixUp; R, rotation; RBC,
random brightness contrast; RE, random erasing; RG, random gamma; SP,
sharpen; SSR, shift scale rotate; TTA, test-time augmentation; WCE, weighted

cross entropy; WDL, weighted dice loss.
a A, B, and C were used to represent the algorithms in tasks 1, 2, and 3,

respectively. The numbers following each letter indicate the ranking.
b The score for task 1 is the average of the quadratic-weighted κ, sensitivity, and

specificity scores. The score for task 2 is the average DSC, and the score for
task 3 is the R2.
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tions in genetic predispositions, environmental factors, and
imaging equipment characteristics could influence the pre-
sentation and detection of MM. Second, while the algorithms
emerging from this competition exhibited performance com-
parable to that of human experts, their practical utility in real-
world clinical environments and epidemiological research set-
tings remains to be rigorously evaluated. Third, it is essential
to acknowledge that these SE prediction algorithms cannot pro-
vide the separate cylinder and sphere powers needed for pre-
scribing spectacles. Conventional methods, such as subjec-
tive refraction using trial lenses or automated refractometry,
are superior and more cost-effective. However, these algo-
rithms can be useful in large-scale screening, opportunistic
screening, and epidemiological research, particularly when
dealing with retrospective datasets where refractive error in-
formation was not originally collected. Finally, the number of
algorithm submissions did not meet initial expectations. Be-
sides insufficient global promotion before the competition, the
types of tasks was also a contributing factor. The MM classi-

fication task received the most submissions due to its exten-
sive research and direct clinical significance in large-scale dis-
ease screening. In contrast, the segmentation and regression
tasks had fewer submissions, as they are used less frequently
in clinical practice.

Conclusions
In this diagnostic study of AI for MM classification and seg-
mentation, algorithms submitted to the MMAC competition
showed promising diagnostic performance compared with oph-
thalmologists, with some DL algorithms outperforming oph-
thalmologists. In this study, we presented an evaluation plat-
form for assessing algorithms, a publicly available MMAC
dataset with annotation, and codes for the submitted algo-
rithms. These publicly available resources may lay the ground-
work for the development of computer-assisted automatic di-
agnostic systems for MM.
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