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Abstract. Myopic maculopathy is a highly myopic retinal disorder that
often occurs in highly myopic patients, serving as a major cause of
visual impairment and blindness in numerous countries. Currently, fun-
dus images serve as a prevalent diagnostic tool for myopic maculopathy.
However, its efficacy relies on the expertise of clinicians, making the
process labor-intensive. Thus, we propose a model specifically designed
for the image classification of myopic maculopathy, named Swin-MMC,
based on the Swin Transformer model architecture, which achieves out-
standing performance on the test dataset. To achieve a finer-grained
classification of myopic maculopathy in fundus images, we have innova-
tively and for the first time proposed the use of enhanced ArcFace loss
in medical image classification. Then, based on the Swin-MMC model,
we introduce a weak label strategy that effectively mitigates overfitting.
Our approach achieves significantly improved results on the test dataset
and can be easily used for various datasets and classification tasks. We
conduct a series of experiments in the MMAC2023 challenge. In the
testing phase, our average performance metric reaches 86.60%. In the
further testing phase, our model’s performance improves to 88.23%, ulti-
mately securing the championship in the MMAC2023 challenge. The
codes allowing replication of this study have been made publicly avail-
able at https://github.com/LuliDreamAI/MICCAI TASK1.

Keywords: Medical image classification · Myopic maculopathy ·
Fundus images

1 Introduction

Myopic maculopathy stands as one of the most severe threats to global visual
health, also known as myopic maculopathy degeneration [9]. In numerous regions,
myopic maculopathy degeneration serves as a prominent cause of visual impair-
ment and blindness. Moreover, the application scope of fundus images is remark-
ably extensive, they not only assist in the treatment of age-related macular
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degeneration (AMD) [17] but also are employed in the detection and screening
of glaucoma [23] while playing a crucial role in the identification and classification
of diabetic retinopathy (DR) [2]. Medical practitioners diagnose the presence of
myopic maculopathy through color fundus images or aim to prevent its further
deterioration [16,21]. In the field of medicine, determining whether an individual
is afflicted with myopic maculopathy often requires specialized ophthalmologists
to meticulously examine images. This process not only consumes a substantial
amount of manpower and time but is also relatively slow. However, with the
advancement of artificial intelligence (AI), deep learning plays a crucial role in
automating clinical data processing, it is now possible to discern the presence of
macular lesions in fundus images without the need for extensive human resources
and time investment [14].

In the early stages, the detection of ocular diseases primarily relied on
the binary classification of fundus images, which merely distinguished between
abnormal and normal images. With the advancement of deep neural network
technologies, Khan et al. [11] combined popular models ResNet50 and Incep-
tionResNetV2 to create an ensemble model, achieving an accuracy of 86.08%
in binary classification tasks. Chen et al. [3] enhanced accuracy to 90.56% in
binary datasets by introducing hybrid units in the dense layer. However, due to
the complexity of ocular structures, the classification of fundus images in recent
years has moved beyond simply separating pathological from normal images. It
now focuses more on finer and more precise categorizations of fundus pathologies
and classifications of various types of ocular diseases. Liu et al. [8] focused their
research on developing a model based on the Vision Transformer (ViT) [6], aimed
at classifying a dataset containing a diverse range of abnormal images. These
abnormalities may originate from any of six different ocular diseases, including
age-related macular degeneration, diabetes, and glaucoma, among others. The
study employed Vision Transformers of varying layer counts, with the objec-
tive of achieving accurate classification across seven distinct labels (healthy and
six different diseases). Utilizing a 14-layer Vision Transformer model, the model
demonstrated optimal performance, evidenced by an F1-score of 83.49%, sen-
sitivity of 84.00%, precision of 83.00%, and a Kappa score of 0.802. However,
it is noteworthy that the study did not venture into a more detailed subdivi-
sion within each disease category. Compared to professional ophthalmologists,
AI models based on deep neural networks have shown exceptional efficiency and
outstanding performance in large-scale medical analysis [7]. Therefore, exploring
how to efficiently apply neural network models for more precise classification of
ocular diseases represents a highly pertinent direction. Additionally, several deep
learning algorithms have already been effectively utilized for screening and clas-
sification tasks related to diabetic retinopathy [4,12,18] and glaucoma [15,20].

To address the classification of the myopic maculopathy problem, Sun et
al. [19] proposed a feature fusion framework that comprises a prior knowledge
extraction module and a feature fusion module, and the model achieves an AUC
value of 0.998 on the test dataset. Wang et al. [21] developed a deep learning
model for detection and classification and achieved high sensitivities, specificities,
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and reliable Cohen’s kappa. In recent years, with the popularity of Vision Trans-
former [6] and Swin Transformer [13], many researchers and scholars began to use
them widely. Hossain et al. [10] proposed the Swin-FSR model, which employs
the Swin Transformer with spatial and depth-wise attention mechanisms for
fundus image super-resolution. This ensures that important fine details are pre-
served during the compression and decompression processes of super-resolved
images. The ViT is commonly employed in medical image classification and seg-
mentation. However, the performance of ViT significantly deteriorates when sub-
jected to adversarial attacks. Almalik et al. [1] introduced a novel self-ensembling
approach to enhance the robustness of the ViT model against adversarial attacks.
The structure of Swin Transformer is shown in Fig. 1, where SwinTB represents
Swin Transformer blocks. Transformer-based models have surpassed traditional
Convolutional Neural Network (CNN) architectures in many image classification
tasks. Considering computational resources and inference speed, we choose the
Swin-base as our baseline model. Building on the Swin Transformer model, we
introduce a novel classification model named Swin-MMC to specifically address
myopic maculopathy classification. The performance details of Swin-MMC will
be discussed in the next section.

Fig. 1. The architecture of a Swin Transformer (Swin-base).

In this paper, our primary contributions are summarized as follows:

• We propose a Swin-based framework, named Swin-MMC, that is adaptive to
medical image classification and demonstrates superior performance on the
test dataset.

• We use the enhanced ArcFace loss with 3 sub-centers (En-ArcFace loss) as
the model’s loss function for the first time in classification tasks in the field
of medical image processing.

• We design a weak label strategy based on our Swin-MMC model that can
generate high-quality weak labels and make inferences efficiently simultane-
ously.

The rest of this paper is organized as follows. In Sect. 2, we will provide
a detailed introduction to our classification method. Next, in Sect. 3, we will
provide a detailed introduction to the dataset, as well as specific details about
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the implementation of the experiments. Then, in Sect. 4, we will discuss the
results and the ablation study, as well as our future work. Finally, in Sect. 5, we
will conclude the paper.

2 Method

In this section, we will present our proposed method for classifying myopic mac-
ulopathy in detail. The architecture of our model is shown in Fig. 2. The model
framework consists of four components: data augment, Swin-base, enhanced Arc-
Face loss with 3 sub-centers, and weak label. Initially, in the supervised training
phase, color fundus images are subjected to data augmentation, and the aug-
mented images, along with their corresponding ground truth labels, are input
to the Swin-base module for training, resulting in the initial Swin-MMC model.
Then, in the semi-supervised training phase, the same model is applied once
again to all fundus images to train the Swin-MMC model. Unlike other meth-
ods, we combined the training and validation sets to form a new image dataset
by merging the true labels of the training data with those of the validation
data to create the ground truth for the new dataset. This new dataset is used
for three rounds of training, ultimately yielding the final Swin-MMC model.
Throughout this process, the loss function employed is the En-ArcFace loss with
3 sub-centers.

Fig. 2. The architecture of a Swin-MMC.

2.1 Enhanced ArcFace Loss with 3 Sub-centers

In the field of medical image processing, we applied the sub-center ArcFace
loss function for the first time to calculate the loss. The enhanced ArcFace loss
with 3 sub-centers is an improved version of the ArcFace loss, and it currently
presents the best performance during the further test phase of MMAC Task 1.
The En-ArcFace loss is widely used in face recognition tasks, capable of handling
numerous facial categories [5]. This loss function can obtain more discrimina-
tive features compared to using softmax + cross-entropy because it calculates
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geodesic distance on a high-dimensional hypersphere, rather than Euclidean dis-
tance. Therefore, utilizing ArcFace loss as the loss function in the model enhances
the ability to accurately discern variations among different lesion categories in
fine-grained color fundus image classification tasks. This implies that the model
is better equipped to accurately capture the differences between various lesion
categories. Similar to many face recognition tasks, the myopic maculopathy clas-
sification task typically encompasses multiple categories. The En-ArcFace loss
is specifically designed to handle a large number of categories and, after fine-
tuning, proves to be well-suited for the task of myopic maculopathy classification.
Our claims have also been validated through ablation experiments, as detailed
in Table 5.

The most widely used softmax loss function for classification tasks is pre-
sented as follows:

L = − log
eWT

yi
xi+byi

∑N
j=1 eWT

j xi+bj
, (1)

where xi ∈ Rd stands for the deep feature of the i -th sample, belonging to
the yi-th class, d stands for dimension. Wj ∈ Rd the j -th column of the weight
W ∈ Rd×N . The number of classes in the classification task is N. bj ∈ RN is the
bias term. Then, by replacing WT

j xi = ‖Wj‖ ‖xi‖ cos θj , We can now transform
the logistic function into an ArcFace loss function, and s is the radius of the
hypersphere.

The enhanced ArcFace loss [5] is presented as follows:

L′ = − log
es cos(θyi

+m)

es cos(θyi
+m) +

∑N
j=1,j �=yi

es cos θj

. (2)

where θj is the angle between the weight Wj and the feature xi. m is an additive
angular margin penalty between xi and Wyi

, θj = arccos
(
maxk

(
WT

jk
xi

))
, k ∈

{1, · · · ,K}. In our paper, k is 3.

2.2 Weak Label

Weak Label Scheme Our weak label strategy includes the following steps:

• In the first stage, a special strategy different from the usual data augmenta-
tion methods was employed. Initially, the original training dataset and the
validation dataset were merged into a new, larger dataset. The real labels of
the original training data were combined with the real labels of the validation
data to create the labels for the new dataset. Preprocessing of the dataset
was carried out during this stage.

• In the second stage, the preprocessed fundus image data, along with the real
labels, were input into the Swin-base model for training. This stage resulted
in the initial Swin-MMC model and weak labels for the training dataset.
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• In the third stage, the dataset obtained in the first stage was used as input
images, and the weak labels generated in the second stage were used as input
labels. They were input into the Swin-base model for further training.

• In the fourth stage, the operations from the second stage and third stages
were repeated three times, ultimately leading to the final Swin-MMC model.

Advantages of Weak Label

• We create a larger dataset by merging the original training and validation
data. This step aims to provide the model with a more diverse set of samples,
enhancing its ability to learn image features and patterns effectively.

• Second, as depicted in Fig. 3, we employ the Swin-MMC model to transform
the initial consistent labels into probability values representing each image’s
likelihood of belonging to different categories. These probability values are
then used as training labels. The approach helps improve the model’s gen-
eralization, enabling it to better handle noise and uncertainty in real-world
applications.

• Furthermore, our weak label strategy involves a multi-stage training process,
introducing more variations and diversity. This allows the model to better
capture complex relationships and features within the data, thereby enhanc-
ing its robustness.

• Finally, the weak label strategy can be easily applied to other datasets and
models.

In conclusion, the weak label strategy offers benefits such as dataset expan-
sion, enhanced generalization, improved robustness, and adaptability to various
datasets and models.

3 Experiments

3.1 Dataset and Evaluation Measures

In task 1 of the MMAC competition, the objective is to classify myopic macu-
lopathy. The dataset for this task consists of a comprehensive collection of color

Fig. 3. The advantage of weak label.
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fundus images. The training set comprises a total of 1143 images, sourced from
two distinct data centers. Among these, 990 images originate from Data Cen-
ter 1, while 153 images are obtained from Data Center 2. The validation set
includes 248 color fundus images, with 215 images from Data Center 1 and an
additional 33 images from Data Center 2. The test set contains 915 color fundus
images, with 783 images originating from Data Center 1 and 132 images from
Data Center 2. The detailed description of the data set is shown in Table 1.

Table 1. Data set descriptions.

Data set Total images Data center 1 Data center 2

Training set 1143 990 (87%) 153 (13%)

Validation set 248 215 (87%) 33 (13%)

Testing set 915 783 (86%) 132 (14%)

Furthermore, the dataset is enriched with essential patient metadata asso-
ciated with each image, providing insights into age, sex, height (measured in
centimeters, cm), and weight (measured in kilograms, kg). It is important to
acknowledge the possibility of missing metadata values in some instances. This
comprehensive dataset serves as the foundation for evaluating and advancing the
performance of algorithms in the task of myopic maculopathy classification.

MMAC Task 1 aims to accurately determine whether a color fundus image
falls into one of five categories: no macular lesions, tessellated fundus, diffuse
chorioretinal atrophy, patchy chorioretinal atrophy, and macular atrophy. These
categories are labeled with natural numbers: 0, 1, 2, 3, and 4, with higher num-
bers indicating more severe conditions. Consequently, the metrics calculation
code utilizes quadratic weighted kappa (QWK), a widely employed evaluation
metric for various medical imaging problems. QWK is a statistical measure
designed to assess the agreement between two annotators. To ensure fairness,
the evaluation metrics also include the F1 score and macro specificity, and indi-
vidual metric scores are separately calculated on all test cases, and the final
ranking score is obtained by averaging the scores of all metrics.

3.2 Image Preprocessing and Augmentation

In the preprocessing and augmentation phase, fundus images underwent normal-
ization using the mean and variance extracted from the Imagenet dataset. This
strategy is rooted in the presumption that leveraging the pretrained weights
from Imagenet, in conjunction with its statistical characteristics, would main-
tain inherent attributes, including spatial locality and translational equivari-
ance, acquired during model training. A thorough analysis of medical literature
revealed that myopic maculopathy predominantly appears in the central zone of
fundus images, with only occasional presence towards the periphery. To accen-
tuate this central significance, images were first resized to 416×416 pixels and
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subsequently subjected to a central crop, yielding a resolution of 384×384 pixels
to align with the model’s input requirements. This procedure not only amplifies
data heterogeneity but also minimizes peripheral noise. Given the standardized
procedure of fundus image acquisition in clinical contexts, certain augmentations
like vertical flipping or Gaussian blurring were considered redundant. Therefore,
the only adopted augmentation was horizontal flipping, executed with a proba-
bility of 0.5, to preserve the diagnostic essence of the images.

3.3 Implementation Details

The configuration of our experimental setups, including the development envi-
ronments and requirements, can be found in Table 2. Detailed procedures
employed for training the Swin-MMC model are delineated in Table 3.

Table 2. Development environments and requirements.

Ubuntu version Linux release

CUDA version 11.3

CPU 15 vCPU AMD EPYC 7543 32-Core

GPU (number and type) 1× NVIDIA A40 48GB Tensor Core GPU

Programming language Python 3.8.0

Deep learning framework Pytorch (Torch 1.11.0)

Specific dependencies mmpretrain 1.0.0rc8

Code https://github.com/LuliDreamAI/MICCAI TASK1

In order to optimize model convergence and enrich the feature learning pro-
cess during training, we incorporated a two-phase learning rate scheduling app-
roach:

LinearLR Increasing Strategy. The initial learning rate is 0, and the strat-
egy linearly increases the learning rate to 0.000125 for the first 5 epochs. After
this period, the learning rate stabilizes, ensuring no further modifications. This
method is predicated on the idea of hastening convergence in the nascent epochs
by leveraging a relatively augmented learning rate.

CosineAnnealingLR Strategy. Commencing post the 5th epoch, this strategy
employs a cosine annealing approach to the learning rate, setting a floor value at
1e-5. This progressive decrement of the learning rate, characterized by its cosine
nature, facilitates intricate model tuning during the concluding training phases,
steering the model to a more refined convergence point.

https://github.com/LuliDreamAI/MICCAI_TASK1
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Table 3. Training protocols.

Basic network Swin Transformer (base)

Network initialization Pretrained weight in Imagenet1K and 21K

Batch size 32

Window size 12 × 12

Optimizer Warmup with betas(0.9, 0.99)

Loss Enhanced ArcFace loss with subcenter=3

Weight decay 0.05

Initial learning rate (lr) 0.000125

Training time per iteration 0.68 s

4 Results and Discussion

4.1 Results on Testing Set

In the testing set, the challenge uses several metrics, namely quadratic weighted
kappa, macro F1, macro specificity, and average, for evaluation. It’s important
to note that the ”average” metric is calculated as the mean value obtained from
quadratic weighted kappa, macro F1, macro specificity, and specificity. In the
testing phase, our method achieved second place with an average of 86.60%. In
the further testing phase, it performed even better, improving by 1.63% and
ultimately securing first place with an average surpassing the original first place
by 0.71%. Detailed evaluation metric scores for our approach in both the testing
phase and the further testing phase can be found in Table 4.

Table 4. The quantitative results of the test phase and further test phase.

Phase Model Volumetric(%) ↑ Average(%) ↑
QWK Macro F1 Macro Specificity

Test Swin-MMC 88.93 76.81 94.06 86.60

Further Test Swin-MMC+Weak label 89.81 80.42 94.48 88.23

4.2 Visualization Heatmap Analysis

We input different original fundus images, as shown in Fig. 4(A), into the Swin-
MMC model. The model generates a color fundus heatmap through the visual-
ization layer, highlighting areas it deems most critical and displaying them using
a color scale as depicted in Fig. 4(B). On the right side of Fig. 4, the cylinder
corresponds to different colors as the numbers increase, indicating the regions
that the model pays increasing attention to. We can observe that Swin-MMC is
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capable of learning and distinguishing the lesion areas of different categories of
myopic maculopathy degeneration and correctly classifying the images into their
respective.

Fig. 4. Visualization of Swin-MMC for classifying the category of myopic maculopathy.
(A) The different categories (Category 1 - Category 4) of myopic maculopathy in the
original images. (B) Heatmaps generated on the deep features of the original images.
Typical myopic maculopathy lesions were observed in hot regions.

4.3 Ablation Study in Further Test Phase

To validate the effectiveness of the En-ArcFace loss function and the weak label
strategy in classifying Myopic Maculopathy, we conducted ablation experiments
during the further test phase on both the Swin-MMC and Swin-MMC+Weak
label models, as detailed in Table 5. For the Swin-MMC model, in the absence
of the En-ArcFace loss function, the performance was at 87.04%. Introducing
the En-ArcFace loss function improved the performance to 87.14%. Importantly,
when incorporating the En-ArcFace loss function and combining it with the weak
label strategy, the model’s performance reached 88.23%. This represents a signif-
icant improvement of 1.63% compared to the previous 86.60% observed during
the test phase. These results indicate that the En-ArcFace loss function and the
weak label training strategy enable the model to capture the features of fundus
images more accurately, thereby enhancing the overall model performance.
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Table 5. Ablation experiments of En-ArcFace loss and weak label strategies.

Phase Model Loss Volumetric(%) ↑ Average(%) ↑
ArcFace En-ArcFace QWK Macro F1 Macro Specificity

Further Test Swin-MMC � 89.87 77.04 94.22 87.04

� 89.88 77.24 94.32 87.14

Swin-MMC+ Weak label � 90.24 79.67 94.41 88.11

� 89.81 80.42 94.48 88.23

4.4 Limitation and Future Work

Based on the Swin-base model, we have proposed a simple and effective weak
label strategy, combined with the En-ArcFace loss function. Up to this point, we
have achieved the best performance on the test data.

Moreover, we are confident that there is further potential for enhancement
in our model. Firstly, self-supervised pre-training has achieved significant suc-
cess in the field of image classification, enabling the learning of domain-level
features from images. However, self-supervised pre-training requires a large vol-
ume of images as a foundation, and the limited availability of medical images
constrains the ability to perform self-supervised training. Therefore, we aim to
leverage weights pre-trained on ImageNet with self-supervised methods such as
SimMIM [22] for continued training on fundus images, followed by fine-tuning
with the pre-trained weights, which could yield promising results. Secondly, we
can explore novel data augmentation techniques tailored to our retinal image
dataset. Appropriate data augmentation strategies can enhance our performance
when employing techniques like Test-Time Augmentation (TTA). Lastly, if there
is no strict requirement for inference time, we may consider employing an ensem-
ble approach with multiple models to enhance model performance.

5 Conclusion

In the classification of myopic maculopathy degeneration, our approach has suc-
cessfully achieved high-precision recognition capability. There are two primary
challenges facing this task: firstly, fundus images and general real-world images
belong to different domains; secondly, the color representation of different dis-
eases in the images is similar, making accurate classification particularly chal-
lenging.

To address these challenges, in comparison to other techniques, we inno-
vatively proposed the use of En-ArcFace loss and weak label to improve the
performance of our image classification algorithm. Specifically, the En-ArcFace
loss provides a tighter feature embedding for classification tasks, aiding in distin-
guishing categories that look incredibly alike. Meanwhile, because the true label
is too sharp, the weak label strategy offers an opportunity for the model to learn
a more precise feature, further enhancing the model’s generalization capability.

Through these methods, we have not only achieved outstanding results on the
initial training dataset but also demonstrated superior performance on further
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test dataset, far surpassing traditional methods. This offers ophthalmologists
a powerful tool to more accurately diagnose and differentiate types of myopic
maculopathy degeneration, leading to more precise treatment recommendations
for patients.
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