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Map-matching is a process that aligns location points on a digital map and it is an essential step in
location-based services. However, regular map-matching methods cannot archive very high accuracy
due to the errors in raw location data and the complexity of road networks. Hence, the final resort for
map matching is often through manual annotation, which is human labour intensive. Therefore, we pro-
pose iMatching, an interactive system for map-matching which greatly reduces annotation cost and
achieves a high accuracy through an active learning approach. Specifically, we model the mapping of a
sequence of location points to a road network as a hidden Markov model and automatically generate
an initial result. Then, we select error-prone points on the trajectory and guide the annotator to review,
and possibly correct, the results. Our evaluation on both real-world and synthetic data demonstrates that
iMatching has a better performance comparing with the existing methods.

� 2021 Elsevier B.V. All rights reserved.
1. Introduction

In location-based services and vehicle monitoring systems, pre-
cise traces of locations (or trajectory) of the moving objects are
essential. However, the precision of a trajectory is often affected
by sampling errors and measurement noises in real life. To solve
such imprecision problem, map-matching [2] is proposed to align
the location points of a trajectory to correct corresponding road
segments. For example, in Fig. 1, trajectory ðp1; p2; p3; p4; p5Þ is
matched to path ðe1; e2; e9; e5; e12Þ.

The major challenge of map-matching is that since a trajectory
is composed of a series of ‘‘sampling” location points, the informa-
tion between two sampling points are missing. Hence, it is difficult
to precisely predict the actual location of a sampling point. In order
to retrieve the missing information, we have to employ human
labours driving through the roads and collecting the ground truth.
These human annotations may lead to a very high cost.

To reduce the costs of manual annotations, one possible
approach is to rank the uncertainties of the location points pro-
duced by a specific map-matching algorithm, and then ask the
human annotator to fix the ‘‘uncertain” points one-by-one. After
each uncertain point is fixed, the map-matching algorithm may
be applied again and generate new rankings with fewer uncertain
points, since more ground truth (‘‘fixed” points) are introduced to
the training data. This approach is similar to active learning [3].
However, there are two issues in this approach: 1) since the
map-matching algorithm is completely re-applied in each round,
the time complexity of the entire approach could be very high;
and 2) it is difficult to define the ‘‘uncertainty” of matched points.

We propose iMatching, an active-learning-based system for map-
matching that 1) utilizes the responses of annotators through an
interactive map-matching algorithm; and 2) poses effective and effi-
cient queries to the annotator through adaptive query selection
strategies. As far as we know, none of the map-matching works could
utilize the annotation feedbacks within the process of a map-
matching task, and existing query selection strategies from active
learning are not specifically designed for the map-matching task.

The main contributions of this paper include:

� We propose and implement a novel interactive map-matching
system called iMatching, which reduces the costs of manual
annotations and achieves a high map-matching precision
simultaneously;
� We design a novel interactive map-matching algorithm based
on hidden Markov model which could utilize the feedbacks of
human annotators;
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Fig. 1. An example of map-matching.
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� We implement various adaptive query selection strategies
which reduce the number of queries posed to the human anno-
tators by up to 44%;
� We evaluate the performance of iMatching on both real-world
and synthetic trajectory data to show that iMatching has a bet-
ter performance comparing with the existing methods.

2. Related works

2.1. Map-matching

There are three types of map-matching algorithms: geometric-
based, topological-based, and statistical-based. Geometric algo-
rithms [2,4] are based on the geometric information of the spatial
road network to identify the actual location of each sampling point.
Although these algorithms are able to process map-matching
queries efficiently, the performance is sensitive to sampling errors
and measurement noises. Topological algorithms [5–7] consider
additional information such as the continuity and connectivity of
the road network to obtain better performance than geometric
algorithms. However, the accuracy of topological algorithms may
decrease on the trajectories with low sampling rates. Statistical
algorithms, such as voting [8], hidden Markov model [9,10], parti-
cle filter [11], Kalman filter [12], and average Fréchet distance [13],
perform better than geometric and topological algorithms, and
could be accelerated by GPU [14–19]. However, these methods
often have high time complexity, and cannot utilize the feedbacks
of human annotators to improve the map-matching accuracy.
2.2. Active learning

The goal of active learning is to obtain the desired outputs at
new data points through querying the information source interac-
tively [3,20]. There are two types of strategies that define the infor-
mativeness of an instance: uncertainty-based strategies [21,22]
and utility-based strategies [23–25]. Uncertainty-based strategies
select the instances whose labels are the least certain, whereas
utility-based strategies select the instances that have the most
impact on the learning task. However, most active learning meth-
ods cannot be directly applied to map-matching tasks due to the
structure difference between regular data and trajectory data. Tra-
jectory has additional features in both spatial and temporal
domains, and the features are often intensively co-related and
varying over time. Most of the existing active learning approaches
cannot handle such data structure.
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3. Overview

Before introducing the definition of the interactive map-
matching problem, let us first define the following terms which
are frequently used in this paper.

3.1. Problem definition

Definition 1 (Trajectory). A trajectory T is a sequence of location
points (a.k.a. sampling points) ðp1; p2; . . . ; pnÞ.
Definition 2 (Road Segment). A road segment (a.k.a. edge)
e ¼ hv i;v ji is a polygonal line between two intersections (a.k.a. ver-
tices) v i and v j.

In Definition 2, it is called road ‘‘segment” because there will be
no other interactions within the road segment, and a ‘‘road” in real
life often consists of a series of road segments.

Two road segments ei and ej are called connected if there is a
vertex v such that v 2 ei and v 2 ej.

Definition 3 (Road Network). A road network G ¼ ðV ; EÞ is a
directed graph consists of a set of intersections
V ¼ fv1;v2; . . . ;vmg and a set of road segments E ¼ fe1; e2; . . . ; eng.

In Definition 3, the graph is directed because road segment
often has a direction restriction (e.g., one way) in real life. In this
paper, we assume that a moving object only travels on the road
network, i.e., the vehicle will not drive off-road.

Definition 4 (Path). A path P is a sequence of road segments
ðe1; e2; . . . ; enÞ where ei and eiþ1 are connected for any ei; eiþ1 2 P.
Definition 5 (Match). A match mi ¼ hpi; eji indicates that the mov-
ing object is travelling along ej 2 P when pi 2 T is collected by the
positioning device.
Definition 6 (Map-Matching Query). A map-matching query
QðT;GÞ is a query which finds a path P and a set of matches M such
that for every pi 2 T , there exists exactly one match mi 2 M where
mi ¼ hpi; eji and ej 2 P.

Based on the above terms, the problem of the interactive map-
matching query is defined in Definition 7.

Definition 7 (Interactive Map-Matching Query). An interactive
map-matching query QðT;G;M0Þ, where M0 is a set of matches
confirmed by the annotators, is a query that finds a path P and a
match set M such that for every pi 2 T , there exists exactly one
match mi 2 M where mi ¼ hpi; eji; ej 2 P, and M0 � M.
3.2. Framework of iMatching system

The iMatching system mainly consists of the following parts as
shown in Fig. 2:

1. An interactive map-matching algorithm which perform interac-
tive map-matching queries with consideration of human anno-
tations; and

2. A query selection strategy which pick and pose an uncertain
match for human annotators to confirm.

The system works as follows. Initially, a trajectory is aligned by
the map-matching algorithm. Then, the resulting path will be
posed to the annotators to review whether it is 100% accurate. If



Fig. 2. The framework of iMatching.
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so, the map-matching task is terminated. Otherwise, the system
will pick and pose an uncertain match for the human annotators
to confirm. After the match is confirmed, the system will perform
the (interactive) map-matching query again and try to fix as many
mistakenly matched location points as possible before asking the
annotators to review the trajectory again.

The details of the interactive map-matching algorithm is illus-
trated in Section 4, and the query selection strategies are intro-
duced in Section 5.
4. Interactive map-matching

4.1. Map-matching mmodel

A typical map-matching algorithm works as follows. First, it
picks a location point pi from the trajectory T ¼ fp1; p2; . . . ; png
and then find the ‘‘nearest” road segment ei 2 E as the matching
of pi. However, due to that only geometric information may lead
to many errors such as detours (the vehicle travels from e1 to e6
and then back to e2 in Fig. 1, where e6 is clearly a mistake), many
works use topological information such like the connectivities
between road segments to conquer them. As for the above exam-
ple, if we know that e1 and e2 are straightly connected, it would
be irregular if the point p2 is matched to e6, and it should be
matched to e2.

The above algorithm could be modelled as a hidden Markov
model [9]. The hidden Markov model for map-matching is shown
in Fig. 3. The geometric information of the map-matching task is
shown as the states of the hidden Markov model, referring to
e1;1; e1;2; . . . ; e1;r , where r ¼ jEj. Meanwhile, the topological informa-
tion fo the map-matching task is labelled as the transitions of
states.
Fig. 3. The interactive map-matching model.
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The emission probability of the hidden Markov model is repre-
sented by the geometric information of the map-matching task,
where the ‘‘nearest” road segment has the highest probability to
be the correct matching. More specifically,

Prðei;jjpiÞ ¼
1ffiffiffiffiffiffiffi
2p
p

d
e�

1
2

pdistðei;j ;piÞ
d

� �2

ð1Þ

where d is the measurement noise in terms of standard deviation,
and we use minimum perpendicular distance [26] pdistðei;j;piÞ to rep-
resent the distance between a road segment ei;j and a location point
pi. The emission probability follows a Gaussian distribution [9].

The transition probability of the hidden Markov model is repre-
sented by the topological information of the map-matching task,
where each transition is denoted as the probability of piþ1 being
matched to eiþ1;jiþ1 if pi is matched to ei;j. More specifically,

Prðei;j; eiþ1;jiþ1 jpi;piþ1Þ ¼
1
b
e�

jcdistðpi ;piþ1Þ�routeðpi ;piþ1 Þj
b ð2Þ

where b is the rate parameter [9]. The topological difference
between different transitions are represented by the absolute dif-
ference of the driving distance routeðpi; piþ1Þ and the direct physical
distance (in this paper, the great circle distance) cdistðpi;piþ1Þ
between pi and piþ1.

4.2. Interactive map-matching algorithm

As defined in Definition 6, the goal of a map-matching query is
to identify an ‘‘optimal” path P such that all pi 2 T are matched to
some road segment ei 2 E. In terms of the hidden Markov model, it
aims to find a series of hidden states P ¼ ðe1;j1 ; e2;j2 ; . . . ; en;jn Þ such
that the joint probability PrðPÞ of P is the highest. Formally,

PrðPÞ ¼
Yn
i¼1

Prðei;ji jpiÞ �
Yn�1
i¼1

Prðei;ji ; eiþ1;jiþ1 jpi; piþ1Þ ð3Þ

The optimal solution P� is argmaxPrðPÞ. There are many algo-
rithms designed to find the optimal solution for the hidden Markov
model. For example, the Viterbi algorithm [27]. However, these
algorithms cannot take any feedbacks from the annotators in each
iteration. Hence, traditional algorithms are not sufficient for the
interactive map-matching task.

Hence, we introduce a novel interactive map-matching algo-
rithm in this paper which extends the Viterbi algorithm to support
taking feedbacks from annotators.

The initial formulation is defined as:

Cð1; jÞ ¼
1 hp1; e1;ki 2 M0; k ¼ j

0 9hpi; ei;ki 2 M0; k– j

Prðei;jjpiÞ 9= hpi; ei;ki 2 M0

8><
>:

ð4Þ

where 1 6 k 6 r.
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The forward formulation [27] is defined as:

Cði; jÞ ¼
Oði; jÞ hpi; ei;ki 2 M0; k ¼ j

0 9hpi; ei;ki 2 M0; k– j

Prðei;jjpiÞ � Oði; jÞ 9= hpi; ei;ki 2 M0

8><
>:

ð5Þ

Oði; jÞ ¼ max
16k6r

Cði� 1; kÞPrðei�1;k; ei;jjpi�1;piÞ ð6Þ

where 1 6 k 6 r; i > 1, and Oði; jÞ is the recursive variable.
In Formula (5), Cði; jÞ is the highest probability of the sequences

of states Pi ¼ ðe1;j1 ; e2;j2 ; . . . ; ei;ji Þ for the first i observations
Ti ¼ ðp1; p2; . . . ; piÞ with ei;j as the final state.

In order to inject the feedbacks from annotators, in each itera-
tion of the forward formulation, if hpi; ei;ji 2 M0, indicates that there
exists one match hpi; ei;ji provided by the annotators, we will 1) set
Prðei;jjpiÞ to 1 and resulting Cði; jÞ ¼ 1� Oði; jÞ ¼ Oði; jÞ; and 2) set
Prðei;kjpiÞ to 0 for all 1 6 k 6 r and k– j, and resulting
Cði; jÞ ¼ 0� Oði; jÞ ¼ 0. Otherwise, the forward formulation works
as normal in Formula (5).

The forward procedure terminates when the last observation pn

is handled. Then the optimal sequence of states with respect to
Cði; jÞ is fetched by the backward formulation [27] defined as:

ei;ji ¼
argmax

16j6r
Cði; jÞ i ¼ n

argmax
16j6r

Cðiþ1;jÞ
Prðei;j ;eiþ1;jiþ1 jpi ;piþ1Þ

1 6 i < n

8><
>:

ð7Þ

In this paper, we use dynamic programming to find the optimal
solution P�. The detailed implementation of the algorithm is shown
in Algorithm 1.
Algorithm 1: Interactive Map-Matching Algorithm

Input: T ¼ ðp1; p2; . . . ; pnÞ, G ¼ ðV ; EÞ, M0

Output: P� ¼ ðe1;j1 ; e2;j2 ; . . . ; en;jn Þ

1. for all e1;j 2 E do

2. if mðp1; e1;jÞ 2 M0 then

3. Cð1; jÞ  1

4. else if mðp1; e1;kÞ 2 M0; 9k– j;1 6 k 6 r then

5. Cð1; jÞ  0

6. else

7. Cð1; jÞ  Prðe1;jjpiÞ

8. end if

9. end for

10. for 2 6 i 6 n do

11. for all ei;j 2 E do

12. if mðpi; ei;jÞ 2 M0 then

13. Cði; jÞ  max

16k6r
Cði� 1; kÞPrðei�1;k; ei;jjpi�1; piÞ
14. else if mðpi; ei;kÞ 2 M0; 9k– j;1 6 k 6 r then

15. Cði; jÞ  0

16. else

17.

Cði; jÞ  Prðei;jjpiÞ � max
16k6r

Cði� 1; kÞPrðei�1;k; ei;jjpi�1; piÞ

18. end if

19. end for

20. end for

21. en;jn  argmax16k6rCðn; kÞ

22. for n� 1 P i P 1 do
23. ei;ji  argmax16k6r
Cðiþ1;kÞ

Prðei;k ;eiþ1;jiþ1 jpi ;piþ1Þ

24. end for
Fig. 4. Example of the scenario considered by distance-based strategy.
25. return P� ¼ ðe1;j1 ; e2;j2 ; . . . ; en;jn Þ
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5. Adaptive query selection

As introduced in Section 1, a good query selection strategy
could reduce the cost of the interactive map-matching query. Intu-
itively, when a trajectory is considered as incorrectly map-
matched by an annotator, the annotator is likely to check the
points along the trajectory to find out mismatched points in a
sequential order or a random order. For the sequential checking
order, the number of points to be checked is determined by the
position of the mismatched points. For example, if the 49th point
of a trajectory that contains 50 points is mismatched, the annotator
has to check 49 points in order to find the mismatched point. Dur-
ing the process, a large portion of correct matches are checked,
which is unnecessary and wasteful. For the random checking order,
the number of points to be checked may vary even for the same
trajectory due to the randomness. In this case, the number of
unnecessary checks can also be very large. Therefore, it is desirable
to have a good query selection strategy that provides candidate
points that are likely to be mismatched to the annotator. Next,
we will introduce several adaptive query selection strategies
respectively.
5.1. Distance-based strategy

Uncertainty sampling is one conventional method introduced
by active learning for query selection, where the least certain item
is picked in each iteration for the annotators to confirm. Specifi-
cally in the map-matching task, the ‘‘uncertainty” could be defined
as the distance ambiguity for a location point pi towards a set of
candidate road segments Ei ¼ fei;1; ei;2; . . . ; ei;rg where r ¼ jEj. For
example, in Fig. 4, p1 and p3 are obviously closer to e1 and e7
respectively, but p2 is ambiguous since it is close to both e2; e3,
and e6. Hence, in this example, p2 should be the most ‘‘uncertain”
item that should be confirmed by the annotators.

Formally, we use Shannon entropy [3] to model the uncertainty
HðpiÞ as the distance ambiguity of a location point pi:

HðpiÞ ¼ �
Xr

j¼1
PrðeijjpiÞ logðPrðeijjpiÞÞ ð8Þ

Hence, given a trajectory T, the next location point p0 that
should be confirmed by the annotators is defined as:

p0 ¼ argmax
pi2T

HðpiÞ ð9Þ

In each iteration, if a location point pi is confirmed by the anno-
tator, HðpiÞ will be set to �1 to avoid duplicate confirmations. In
conclusion, Oð1Þ is the time complexity of the distance-based
strategy.



Fig. 6. Example of the scenario considered by dynamic confidence-based strategy.
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5.2. Confidence-based strategy

The distance-based query selection strategy is purely geometric
and lack of consideration to the topological information. For exam-
ple in Fig. 5, p2 is close to both e2 and e4, while p3 is also close to
both e3 and e5. However, we can see that p3 is slightly closer to
e5 than e3. Hence, according to the distance-based strategy, p2 will
be considered as most uncertain.

If we consider the topological information of the road network,
either p3 is matched to e3 or e5 will only affect the sub-path choices
of ðe3; e6Þ or ðe5; e9Þ. However, the paths differ a lot if p2 is matched
to e2 or e4. If p2 is matched to e2, the path could be ðe1; e2; e3; e6; e10Þ
or ðe1; e2; e5; e9; e10Þ. But if p2 is matched to e4, only
ðe1; e4; e8; e5; e3; e6; e10Þ will be the resulting path and this path is
quite irregular in real life. Hence, it is more important to confirm
p2 before p3 if we consider the topological information of the road
network.

Hence in this section, we define a confidence probability
Prðhpk; ek;liÞ for each candidate match hpk; ek;li of a location point
pk. By applying the interactive map-matching query
QðT;G; fhpk; ek;ligÞ, we have a match set Mk;l and a local optimal
path Pk;l. Formally,

Prðhpk; ek;liÞ ¼ PrðPk;lÞ

¼
Yn

i¼1Prðei;ji jpiÞ �
Yn�1
i¼1

Prðei;ji ; eiþ1;jiþ1 jpi;piþ1Þ ð10Þ

where ei;ji 2 Pk;l for each ei;ji .
Similar to Formula (10), the uncertainty HðpiÞ of location point

pi is defined as:

HðpiÞ ¼ �
Xr

j¼1
Prðhpi; ei;jiÞ logðPrðhpi; ei;jiÞÞ ð11Þ

The next location point p0 that should be confirmed by the
annotators is the same as Formula (9). Similar to the distance-
based strategy, Oð1Þ is also the time complexity of the
confidence-based strategy.

5.3. Dynamic confidence-based strategy

The above two strategies will scan all the location points pi 2 T
with HðpiÞ – �1 and check if pi fits the uncertainty criteria.
Hence, they are not efficient when some locations points have
influence on each other. For example, in Fig. 6, p1; p2 and p3 are
all uncertain with respect to e1 and e2. However, it is clear that if
one of them is matched to either e1 or e2, the rest of them should
also be matched to the same road segment, because the vehicle
cannot switch between e1 and e2 due to they are not even con-
Fig. 5. Example of the scenario considered by confidence-based strategy.
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nected. Hence, confirming only one of them is enough for the
map-matching algorithm, and there is no need to let the annota-
tors confirm all of them. This further indicates that the
confidence-based strategy should recalculate the confidence
Prðhpk; ek;liÞ for all the location points in each iteration before
applying the map-matching query.

More specifically, instead of generating the confidence proba-
bility through QðT;G; fhpk; ek;ligÞ, the dynamic confidence-based
strategy generates the confidence probability through
QðT;G;M0 [ fhpk; ek;ligÞ in each iteration, where M0 is the cumula-
tive matches confirmed by the annotators:

M0 ¼
[

8pi2T;HðpiÞ¼�1
fhpi; ei;ji ig ð12Þ

The uncertainty HðpiÞ and the next location point p0 that should be
confirmed by the annotators is same as Formula (11) and (9),
respectively. Since M0 is recalculated in each iteration via Formula
(12), the dynamic confidence-based strategy has a time complexity
of Oðn� rÞ, where n ¼ jTj and r ¼ jEj. Please note that the efficiency
of the dynamic confidence-based strategy could be increased by
setting r <¼ jEj with a ranking of all ei;j 2 E. The details are shown
in Section 6.2.

5.4. Stability-based strategy

As introduced in the dynamic confidence-based strategy, the
confidence probability of some location point may be influenced
by the matchings of other locations points. For example in Fig. 7,
p1 is more confident to be matched to e1 if one of p2; p3 and p4 is
also matched to e1. However, in some specific cases such like p5,
it is not only confident to be matched to e3 if p7 is also matched
to e3, but also confident to be matched to e4 if p6 is also matched
to e4. This phenomenon is called unstable for a location point
towards the matchings of other location points.

Formally, we define the influence of two location points
pa; pb 2 T as pa � pb if and only if hpa; eai R Mb. Mb is the set of
matches by querying QðTb;GÞ where
Fig. 7. Example of the scenario considered by stability-based strategy.
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Tb ¼ ðp1; p2; . . . ; pb�1; pbþ1; . . . ; pnÞ is the trajectory omitting pb.
Then, the uncertainty, i.e., the stability is defined as:

HðpiÞ ¼
X

8pj2T;pi:�pj
1 ð13Þ

Hence, given a trajectory T, the next location point p0 that should be
confirmed by the annotators is defined as:

p0 ¼ argminpi2THðpiÞ ð14Þ

Since the stability of a location point is calculated using all the other
locations points in each iteration, Oðn2Þ is the time complexity of
the stability-based strategy.
6. Evaluation

In this section, we evaluate the performance of iMatching. We
conduct extensive experimental studies to show the effectiveness,
efficiency, and scalability of the interactive map-matching algo-
rithm introduced in Section 4, and the query selection strategies
introduced in Section 5.
6.1. Experiment data

In this paper, all trajectory data will be mapped to a road net-
work obtained from a transportation department in China. The
road network data is composed of 36,451 road segments and
25,613 intersections [28]. In order to clearly show the performance
of iMatching under different situations of traffic, we employ both
synthetic data generated through a trajectory generator, and
real-world trajectory data provided by the government [29–32].

The synthetic trajectory generator consists of the following
configurations:

1. np, the number of location points of the trajectory;
2. ne, the number of road segments that the moving object travels

along; and
3. d, the measurement noise represented by the generated stan-

dard deviation.

The synthetic trajectory generator works as follows. First, it ran-
domly chooses an intersection vs and generates a random ne-hop
shortest path P ¼ ðe1; e2; . . . ; ene Þ starting from v s. Then, it randomly
selects a starting point p1 and an ending point pnp from e1 and ene ,
respectively. Next, it computes the driving distance routeðp1;pnp Þ
along P and calculates the distance interval D between two consec-
utive location points:

D ¼ routeðp1;pnp Þ
np � 1

ð15Þ

Starting from p1, the synthetic trajectory generator generates the
location of next point along path P with
routeðp1;piþ1Þ ¼ routeðp1;piÞ þ D. After all the points are generated,
the generator adds a noise to each location point pi 2 T based on
Gaussian distribution with the standard deviation d, and finally fin-
ish the desired trajectory T ¼ ðdðp1Þ; dðp2Þ; . . . ; dðpnp ÞÞ.

After generating a synthetic trajectory, the generator launches
the map-matching query QðT;GÞ and compares the result with P
to find the initial accuracy of the trajectory, which stands for the
percentage of correctly matched location points in T.

In the experiments, there are 11 groups of trajectories with at
least 50% initial accuracy and consists of 50 location points each
that are generated based on the following configurations:
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1. Initial Accuracy: <60%, 60–70%, 70–80%, 80–90%, and P90%
with fixed sampling rate of 1.5 min and measurement noise
of 101.04 meters.

2. Sampling Rate: 0.5 min, 1.5 min, and 4.5 min with a fixed initial
accuracy of 70–80% and measurement noise of 11.23 m. Based
on the sampling rate and our data analysis, we set the number
of road segments to 10, 30, and 90, respectively.

3. Measurement Noise: 11.23 meters, 33.68 meters, and 101.04
meters with a fixed initial accuracy of 60–70% and a sampling
rate of 0.5 min, based on our analysis of the experimental data.

The real-world trajectory dataset is collected from 15,231 taxis with
154 million records for 26 days. We have manually map-matched
200 trajectories, and each trajectory contains 50 location points.
The map-matching process is through iMatching and the entire
annotation history is recorded.

6.2. Evaluation metrics

To evaluate the performance of iMatching on trajectory T, we
introduce the following evaluation parameters: 1) fðTÞ, the quan-
tity of mistakenly map-matched location points by the map-
matching algorithm; 2) gðTÞ, the number of uncertain matches
posed to the human annotators to confirm; and 3) wðTÞ, the num-
ber of ‘‘effective” uncertain matches posed to the human annota-
tors to confirm. By ‘‘effective”, it indicates that the location point
pi 2 hpi; eji is indeed mistakenly map-matched and the correct
match should be hpi; e

0
ji.

In the experiments, we introduce the following evaluation
metrics:

1. Cost Ratio: Since the main purpose of the query selection strat-
egy is to reduce the number of queries posed to the annotators,
the first metric is defined as the reviewing cost ratio, where a
lower cost ratio presents less potion of queries posed to the
annotators. Formally,
CR ¼ gðTÞ
jTj ð16Þ
2. Selection Accuracy: Since the workflow of iMatching terminates
when all the map-matching errors are corrected by the annota-
tors. The query selection strategy aims to find out all the mis-
matched points as quickly as possible. Thus, the second
metric is defined as the selection accuracy, where a higher
selection accuracy indicates a higher rate of selecting mis-
matched points. Formally,
SA ¼ wðTÞ
gðTÞ ð17Þ
3. True Negative Rate: Since the interactive map-matching algo-
rithm captures the topological correlation between the points
on a same trajectory, some of the points could be automatically
corrected after the annotator corrects one of them. The annota-
tion cost reduced by such operation is evaluated by the true
negative rate, where a lower true negative rate presents more
location points are automatically corrected by the interactive
map-matching query. Formally,
TNR ¼ wðTÞ
fðTÞ ð18Þ

6.3. Evaluation results

The experiments employ all the four adaptive query selection
trajectories as introduced in Section 5, including:
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� Stability-based strategy (STAB);
� Dynamic confidence-based strategy (D-CONF);
� Confidence-based strategy (CONF); and
� Distance-based strategy (DIST).

For comparison, we also adopt two baseline strategies:

� Sequential strategy (SEQ): the location points are posed to the
annotators in a sequential order; and
� Random strategy (RAND): the location points are posed to the
annotators in a randomized order.

6.3.1. Performance on synthetic data
Fig. 8 demonstrates the evaluation results on the synthetic tra-

jectory dataset. For CR and SA, the performance results of the pro-
posed query selection strategies are much better than the baseline
strategies. Specifically, STAB achieves the best performance among
all strategies, and D-CONF outperforms the two global strategies
DIST and CONF, since it improves CONF as well as DIST. In terms
of TNR, the performance results of all the query selection strategies
are almost the same. This indicates that our interactive map-
matching algorithm is stable despite of query selection strategies,
and can automatically correct mismatched points during each iter-
ation effectively.

According to Fig. 8, by applying the proposed query selection
strategies, CR is reduced up to 44%, SA is improved up to 24%,
and TNR is automatically corrected up to 59% during human anno-
tations. The results show that the proposed adaptive query selec-
tion strategies and the interactive map-matching algorithm
significantly reduces the annotation cost.

Next, let us discuss the impact of the configuration parameters
on the performance of the query selection strategies. First, both CR

and SA drop, and TNR rises upon a higher initial accuracy. This is
because if the number of correctly matched points increases, the
chance of finding incorrectly matched points will drop, hence the
number of points that are automatically corrected will decrease
after one of the points being corrected, and the number of itera-
tions that are required to complete the map-matching task will
also decrease. As a result, iMatching can reduce gðTÞ despite the
Fig. 8. Performance of iMatching
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initial accuracy of the map-matching task, and performs much bet-
ter than the baseline methods. Second, both CR and TNR increase,
and SA drops whenmeasurement noise and sampling rate are high.
However, comparing with the baselines query selection strategies,
the proposed query selection strategies are less sensitive to mea-
surement noise, but more sensitive to sampling rate. This is
because a higher sampling rate could create a large gap between
two consecutive road segments, but a higher measurement noise
only affects the geometric distance between the correct road seg-
ment and the location point. Hence, the lack of topological infor-
mation is more serious than the lack of geometric information,
which makes the proposed query selection strategies more sensi-
tive to sampling rate rather than measurement noise. Nevertheless,
in conclusion, iMatching could generally outperform the baseline
methods.
6.3.2. Performance on real-world data
Fig. 9 shows the evaluation results on the real-world trajectory

dataset. In Fig. 9, the proposed query selection strategies clearly
perform more efficient than the baseline query strategies with
respect to CR and SA. More specifically, STAB achieves the best per-
formance by reducing 29% of CR and improving 21% of SA compar-
ing with the baseline query selection strategies. Furthermore, 12%
of the mistakenly map-matched location points are fixed by the
interactive map-matching algorithm automatically, even though
the initial accuracy is already high.

In conclusion, the performance of iMatching on both synthetic
and real-world trajectory datasets are similar, and they all outper-
form baseline methods. Hence, iMatching accomplishes a sufficient
performance for all kinds of trajectories, and prominently reduces
the annotation cost.
6.4. Scalability

In order to show the scalability of the proposed adaptive query
selection strategies, we generate a new trajectory dataset with 8
groups of trajectories consist of 10–80 location points each. The
configurations are set to: 60–70% for initial accuracy, 1.5 min for
sampling rate, and 101.04 meters for measurement noise.
on synthetic trajectory data.



Fig. 9. Performance of iMatching on real-world trajectory data.
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Fig. 10a shows the impact in terms of response time by the
number of location points, and Fig. 10b shows that impact on
TNR. Similar to the theoretical analysis in Section 5.3 and 5.4, the
response time increases linearly upon the number of points for
D-CONF and STAB. On the contrary, TNR drops before the number
of points reaches 50, and rises after. This indicates that TNR per-
forms best if the number of location points is around 50. Based
Fig. 10. Scalability of the adaptati
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on such observation, we try to break long trajectories into short
sub-trajectories consists of 50 location points, and apply iMatching
on them separately before joining the results together. The evalu-
ation in terms of the average execution time of the above
trajectory-breaking method is shown in Fig. 10c. In Fig. 10c, it is
clear that breaking long trajectories into short ones could signifi-
cantly reduce the task time, especially for D-CONF and STAB.
ve query selection strategies.
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7. Conclusion

In this paper, we propose an interactive map-matching system,
called iMatching, which reduces the costs of manual map-matching
annotations and maintains the high accuracy of a map-matching
task. The system consists of a novel interactive map-matching
algorithm and various adaptive query selection strategies. Through
the experiments conducted on both synthetic and real-world tra-
jectory datasets, iMatching is proven to be both effective and effi-
cient. Since we only consider independent annotators for the
interactive map-matching task, we plan to extend the interactive
map-matching algorithm by introducing crowd-sourcing methods,
in which multiple annotators are involved in a map-matching task.
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