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Abstract—In this paper, we proposed a new method called 

Prior Landmark Algorithm (PLA) to address the limitations of 
traditional face landmark prediction techniques. PLA predicts the 
offset between real and prior landmarks to overcome the issue of 
solvable domain coverage and to handle different face poses and 
shapes. A new loss function with weights (PL-Loss) and the 
strategy of Online Hard Example Mining were also introduced to 
improve the accuracy of the model. The adoption of prior 
landmarks and an auxiliary classifier eliminate the need for face 
normalization during training. The results show that PLA 
achieved comparable accuracy to state-of-the-art models and had 
a small model size of only 10 MB with fast processing speed of 162 
FPS on average.  

Keywords-component; face alignment, landmark analysis, object 
detection, prior knowledge  

I.  INTRODUCTION  
Face landmarks detection, also known as face alignment, 

involves identifying key regions of the face, such as eyebrows, 
eyes, nose, mouth, and facial contours in a given face image. It 
serves as the foundation for various face-related tasks like face 
recognition, expression analysis, and 3D face reconstruction. 
Despite its significance, face landmarks detection remains a 
challenging task, requiring robustness in different conditions 
like poses, expressions, lighting, and image quality.  

Inspired by traditional object detection algorithms, we 
introduce prior landmarks to predict the offset between natural 
landmarks and prior landmarks, leading to improved accuracy 
and faster inference speed. To resolve ambiguity between 
samples, we introduce a weighted regression loss function called  

 

Figure 1.  Landmarks inferred by PLA where the dots repre- sent predited 
landmarks. PLA is capable of handling head deflection and partially occluded 

images. 

PL-Loss. Additionally, a classifier is used to categorize face 
types based on pose and shape, and theprediction results are 
fused by selecting the top-N results. Our approach addresses the 
limitations of traditional face landmarks detection methods, 
making it a promising solution for practical applications. The 
contributions of this paper include: 1) we propose a novel 
approach to face landmarks detection that utilizes prior 
landmarks to improve accuracy and speed; 2) we introduce PL-
Loss to resolve ambiguity between faces; 3) we design a 
classifier to categorize face types based on pose and shape.  

II. RELATED WORKS 
Recently, face landmark detection has been approached as a 

regression problem, with methods based on convolutional 
regression networks showing promising results and significantly 
improving detection performance. Sun et al. [1] was the first to 
apply a CNN to face landmark detection,  
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Figure 2.  The network structure of PLA 

presenting a coarse-to-fine method, named DCNN, which 
incrementally estimates the positions of facial landmarks. 
Subsequently, CNNs [2–4] were integrated as a regression 
module in facial landmark detection. This unification allowed 
for the learning of relevant and specific facial regions, leading to 
improved robustness across various alignment tasks.  

Combining face landmark detection with other tasks has also 
been explored. Zhang et al. introduced the Multi-Task Cascaded 
Convolutional Network (MTCNN) [5] to tackle face detection 
and alignment problems simultaneously. Wu et al. [6] presented 
the boundary-aware LAB face alignment algorithm, using 
boundary information as geometric structure to better-fit 
landmarks within the face boundary and reduce landmark drift. 
Zheng et al. [7] propose a pre-training method, FaRL, that  

employs image-text contrastive learning and masked image 
modelling to learn facial representations that are more 
generalizable, resulting in improved performance on 
downstream tasks such as face alignment.  

All the above methods predict face landmarks directly, while 
PLA was inspired by object detection algorithms and predicts 
the offset between a prior anchor and ground truth, offering 
accuracy and speed suitable for real-world applications.  

III. THE NETWORK STRUCTURE OF PLA. 
Prior Landmark Algorithm (PLA) is a one-stage, regression 

convolutional neural network (CNN) incorporating a classifier. 
As shown in Fig. 2, PLA is composed of the following modules:  

1) The backbone network was inspired by MobileNet-V2 [8] 
and was designed with some blocks such as depth-wise 
separable convolution, linear bottlenecks, and inverse residuals 
to maintain high performance while minimizing computational 
complexity.   

2) The classification module employs convolutional and 
pooling layers. Traditional classification networks use fully 

connected layers, which can account for up to 80% of the total 
parameters. To avoid an excessive number of model parameters, 
we use the global average pooling (GAP) to merge the learned 
features, thereby reducing model complexity. Our results 
surprisingly demonstrate that using GAP instead of fully 
connected layers enhances classification accuracy.  

3) The regression module utilizes a single convolutional 
layer. While detection networks utilize multi-layer feature fusion 
and scale-aware feature selection to improve performance on 
complex tasks, these techniques are unnecessary for facial 
landmark detection, which is performed on images of a fixed 
size containing a single face. Thus, a simpler network 
architecture with a single convolutional layer maintains 
accuracy and efficiency for this task.  

PLA leverages prior information to improve network 
convergence and simplify data preprocessing. Inspired by 
YOLOv2 [9], we also use K-Means [10] to cluster landmarks in 
the training set and generate k(depends on the dataset) landmark 
anchors assuming that the dataset contains k reference faces with 
different poses, scales, etc. The network predicts the offset 
between the ground truth landmarks and these prior landmark-
anchors and simultaneously identifies the type of landmark-
anchor. Incorporating prior landmarks in our approach 
eliminates the need for image normalization and simplifies data 
preprocessing.   

The loss of PLA is composed of the cross entry loss for 
classifier and the prior landmarks loss for regression.  

A. Cross Entry Loss for Classifier 
The class label of the classifier is determined by assigning a 

value of 1 to the nearest landmark-anchor and 0 to the others 
based on the Euclidean distance between the priors and reals. 
The classifier uses cross-entropy loss as its loss function, which 
is calculated as follows:  

𝐿!"# = −log	(𝑝$) (1) 

B. Prior Landmarks Loss for Regression 
Object detection tasks are typically treated as regression 

tasks and often use the L2 loss function. However, for the 
regressor in PLA, we use the wing loss to account for the impact 
of minor errors. The function is given as: 

 wing	(𝑥) = /𝑤ln	(1 + |𝑥|/𝜖)				 if |𝑥| < 𝑤
|𝑥| − 𝐶				  otherwise  (2) 

Given k groups of prior and predicted landmarks, the real 
correspond to only one prior, leading to high error rates when 
considering only the closest prior. This hinders the convergence 
of network regression, necessitating careful consideration of loss 
weights. Therefore, we propose Prior Landmarks Loss(PL-loss) 
to  account for blurry samples at class boundaries and is designed 
to mitigate losses. 

First, calculate the error caused by the distance. The k groups  
losses generated by the regressor are respectively marked as li, 
the ground truth landmarks are marked as gt, and the k prior 
landmarks are marked as pti. The Euclidean distance between gt 
and pti is given as: 
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 𝑑% = dist	(𝑔𝑡, 𝑝𝑡%) =∥ 𝑔𝑡 − 𝑝𝑡% ∥&, 𝑖 ∈ (0,1, … , 𝑘)      (3) 

where di can also be calculated according to Eq. (2), gt =(gt1, 
gt1, ...,  gtm), pti=(pti1, pti2, …, ptim), m represents the number of 
landmarks in the dataset. And we normalize di as:	

 norm % =
'!

∑  "#
!$% '!

  (4)	

Calculate the weights according to the result obtained by Eq. 
(4) and normalize it: 

𝑤𝑙% =
*

+,-./!
&01

  (5) 

ε means infinitesimal, and θ is used to control the expansion 
of the weight. Generally, θ is set to 2. 

We try to pay more attention to the nearest prior:  

𝐼 = argmin%∈(4,…,*7)	(normd %)  (6) 
α is set to the expansion parameter. Generally, we set α = 2, 

the weight of each loss is finally given as: 

𝑤𝑓% = /𝛼 ∗ 𝑤𝑙% , 				𝑖 = 𝐼
𝑤𝑙% , 				  otherwise  (7)	

𝑤% =
9:!

∑  "#
!$%9:!

   (8) 

Following the equations below, weight each loss of the 
landmarks, ei  = (ei1, ei2, …, eim) means the error from the i-th 
prior-landmarks, the weight of each landmark li is given as:  

 𝜇%
; = 𝑚 ∗ <!

'

= <!
'(

'$"

, 𝑖 = 0,1, … ,15; 𝑗 = 1,2, … ,𝑚  (9) 

 𝑙% =S 𝜇%
; ∗ 𝑒%

;
>

;?*
 (10) 

where the external is still multiplied by a factor m to ensure that 
the dimension of li remains unchanged. Moreover, in order to 
pay more attention to landmarks that are difficult to converge, 
OHEM [11] is used to optimize. Each landmark's loss is sorted, 
30 landmarks with the largest loss are selected to expand their 
weight. The expansion factor is set to 2. 

The final regression loss function is given as: 

 𝐿@<A = ∑ 𝑤%*7
%?4 ∗S 𝜇%

; ∗ 𝑒%
;

>

;?*
 (11) 

Our study diverges from previous research by not calculating 
regression error as the distance between predicted and actual 
landmark coordinates. Following Faster-RCNN [12] and YOLO 
v2 [9], we utilize prior landmark positions and adopt a more 
sophisticated approach to bias calculation, which means we just 
predict the offset instead of predicting landmarks directly. (xpt, 
ypt) refers to a prior landmark, (xg , yg ) refers to the real landmark, 
while (x, y) refers to the predicted landmark, and (tx , ty) refers 
to the predicted offset, while (txg , tyg) refers to the real offset, 

and diod is set to the inter-ocular distance of the prior landmarks. 
Then regression of ground truth offset can be calculated as: 

 
𝑡B = V𝑥 − 𝑥C$W/𝑑iod , 𝑡D = V𝑦 − 𝑦C$W/𝑑iod 

𝑡B
A = V𝑥A − 𝑥C$W/𝑑iod , 𝑡D

A = V𝑦A − 𝑦C$W/𝑑iod 
 (12) 

C. Total Loss 
Based on Eq. (1) and Eq. (11), the total loss of PLA is: 

 𝐿$E$F" =
*
G
∗ 𝐿!"# +

H
G
∗ 𝐿@<A (13) 

where N is equal to the numbers of priors we set, λ = 2.  

IV. EXPERIMENTS 
We evaluate PLA on two well-known facial landmarks 

detection datasets: WFLW [6] and 300W [13]. WFLW 
comprises 10,000 images, with 7,500 used for training and 2,500 
for testing. Each image features 98 manually annotated facial 
landmarks, as well as rich attribute annotations such as occlusion, 
pose, makeup, lighting, blur, expression, etc. which is available 
for evaluating the model's robustness easily. 300W comprises 
3,837 training images and 600 testing images from multiple 
sources, each of them annotated 68 facial landmarks. 

In this paper, the performance of our model is assessed using 
the normalized mean error (NME), which is given as: 

 NME =
= ∥J(!)

+ KJ(!)∥,
-

!$"
G×'

 (14) 

where d is the normalized distance. NME is a commonly 
used metric in face alignment datasets, with the inter-pupil and 
inter-ocular distances expressed to provide a more 
comprehensive evaluation. 

We obtained face images based on a given bounding box and 
used a batch size of 32. The network is implemented by PyTorch,  

       
(a) original            (b) rotation                (c) scale 

        
                       (d) shift                (e) occlusion              (f) blur 

Figure 3.  Data augmentation 
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TABLE I.  COMPARISON ON # OF PRIOR LANDMARKS 

Dataset WFLW 300W 
# of Prior Landmarks 4 9 16 4 9 16 
Inter-ocular NME % 6.59 6.29 5.59 4.59 4.54 4.67 

TABLE II.  COMPARISON ON DISTANCE OF PRIOR LANDMARKS 

di 7 8 13 12 17 23 
norm di 0.088 0.100 0.162 0.150 0.213 0.288 

wli 130.612 100.00 37.870 44.444 22.145 12.098 
wfi 261.224 100.00 37.870 44.444 22.145 12.098 
wi 0.547 0.209 0.079 0.093 0.046 0.025 

TABLE III.  EXAMINATION OF WEIGHTING EQUATION 

Top No. 0 1 2 3 4 5 
li 10 12 17 14 25 37 
wi 0.547 0.209 0.079 0.093 0.046 0.025 

wili 5.467 2.418 1.343 1.302 1.158 0.936 

and the Adam optimization with a fixed learning rate of 0.001 is 
utilized. The maximum number of iterations is set to 100K, and 
the experiments are run on an RTX-1080Ti GPU. To improve 
the model's generalization ability and increase the diversity of  
the dataset,  as shown in Fig. 3, data augmentation such as 
random rotation, scale, shift, and blur are applied. 

Additionally, all images are resized to 256*256 to maintain 
consistency. 

A. Comparison on # of Prior Landmarks  
K-Means was employed to cluster the landmarks in the WFLW 
and 300W training sets, resulting in distinct groups of prior 
landmarks with varying poses and shapes. The evaluation results 
for models trained on different numbers of prior landmarks are 
presented in Table I. WFLW obtained the best performance 
using 16 priors, while 300W is with more minor variations in 
head pose and expression and performs best when the number of 
priors is set to 9. 

B. Comparison on Distance of Prior Landmarks 
To verify the rationality of the weight setting in the loss function 
of regression, we take 6 samples at different distances to 
examine the weight calculation according to Table II. Generally, 
α = 2, γ = 2. For samples with two very close distances, the 
closest prior landmark is assigned a relatively large weight of 
0.547, while the second closest distance is also considered to 
some extent. This approach effectively balances the importance 
of the different distances in calculating the overall weight. As 
given in Table III, the greater the loss between real landmarks 
and the farther away priors, the more the weighting effect is 
countered, which supports the validity of  Eq. 11. 

C. Model Analysis 
Each real landmark may correspond to more than one prior 
landmark. As shown in Table IV,  PLA_top3 considers the 
average of the top-3 predictions with highest classification 
score as the final result to ensure the stability of the landmark 
position. As given in Table V, ablation study of different 
number of prior landmarks setting was also operated. The NME 
evaluation metric uses the inter-ocular normalization factor for 

TABLE IV.  COMPARISON OF LATEST MODELS ON WFLW  

Method NME (%), Inter-ocular 
Testset test pose Expres-

sion 
Illumi-
nation 

make-
up 

Occlus-
ion 

blur 

ESR [14] 11.13 25.88 11.47 10.49 11.05 13.75 12.20 
SDM [15] 10.29 24.10 11.45 9.32 9.38 13.03 11.28 
CFSS [16] 9.07 21.36 10.09 8.30 8.74 11.76 9.96 
DVLN [17] 6.08 11.54 6.78 5.73 5.98 7.33 6.88 

LAB [6] 5.27 10.24 5.51 5.23 5.15 6.79 6.32 
PLA top1 5.62 10.34 6.04 5.45 5.65 6.76 6.29 
PLA top3 5.59 10.3 5.98 5.43 5.59 6.74 6.27 

TABLE V.  COMPARISON OF LATEST MODELS ON 300W 

Method Common 
 Subset 

Challenging 
 Subset 

Full 
 Subset 

Inter-pupil Normalization 
RCPR [18] 6.18 17.26 8.35 
CFAN [19] 5.50 16.78 7.69 
ESR [14] 5.28 17.00 7.58 
SDM [15] 5.60 15.40 7.52 

3DDFA [20] 6.15 10.59 7.01 
PLA Prior16 top3 5.60 10.46 6.55 
PLA Prior4 top3 5.50 10.61 6.46 
PLA Prior9 top3 5.42 10.43 6.37 

Inter-ocular Normalization 
PIFA-CNN [21] 5.43 9.88 6.30 

RDR [22] 5.03 8.95 5.80 
PCD-CNN [23] 3.67 7.62 4.44 

PLA Prior16 top3 4.02 7.46 4.67 
PLA Prior4 top3 3.96 7.35 4.59 
PLA Prior9 top3 3.91 7.22 4.54 

TABLE VI.  COMPARISON ON MODEL SIZE & PROCESSING SPEED 

Model SAN [24] LAB [6] SDM [15] PFLD 1X[25] PLA 
Size (Mb) 798 50.7 10.1 12.5 10.4 

Speed(FPS) 3 6 62.5 163 162 

 
Figure 4.  Inference results of PLA.  

the WFLW, while the inter-pupil and inter-ocular normalization 
factors are used for the 300W. 
We evaluate the inference performance of the PLA algorithm 
on the CPU and compare it to other models and the comparing 
result is given in Table VI. PLA enjoys a smaller model size 
and faster processing speed, which shows it is a promising 
candidate for various applications. 
Fig. 4 shows the performances on the test sets from WFLW [6] 
and 300W [13] (red dots are  predicted landmarks, and yellow 
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dots are prior landmarks for classification top-1 output), PLA 
can handle some head-deflection and partially occluded images. 

V. CONCLUSION 
We present a novel facial landmark detection model, named 
PLA, that leverages prior landmarks. The backbone of PLA is 
inspired by MobileNet-V2, leading to a smaller model size and 
faster inference. To enhance training, a classifier is incorporated, 
and a weighted regression loss function is employed to promote 
convergence. Our experimental results demonstrate that PLA, a 
single-stage regression network, surpasses other models in 
terms of accuracy, model size, and processing speed. Hence, 
PLA is a viable solution for practical applications. 
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