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Abstract—Aspect Term Extraction (ATE) aims to extract
opinionated aspect terms from review texts, and it has been
widely studied in both academia and industry. As a token-level
and domain-specific task, the annotation cost is extremely high.
Domain adaptation is a popular solution to alleviate the issue
by transferring common knowledge across domains. However,
most previous studies still rely on manually labeled pivot words
or external knowledge to establish cross-domain associations.
In this work, we propose a novel Syntax-guided Aspect Term
Extraction model, named SATE, which enables automatic domain
adaptation without relying on external knowledge sources. SATE
utilizes syntactic structure similarity as a proxy-pivot feature to
automatically construct cross-domain associations. Besides, al-
though pre-trained language models have significantly improved
the performance of this task, fine-tuning a pre-trained model on
the source domain often leads to a drastic performance drop
on the target domain due to domain discrepancy. To address
this issue, we propose a variant of the masked language model
based on the syntactic structure similarity between domains to
learn a domain-invariant representation. Additionally, to further
facilitate adaptation, we construct syntax-based pseudo instances
for training. Experiments show that SATE achieves at least a
3.5% improvement in Micro-F1 over state-of-the-art baselines
across three benchmark datasets on average.

Index Terms—domain adaptation, aspect term extraction, pre-
training.

I. INTRODUCTION

Aspect Term Extraction (ATE) is a crucial sub-task in
aspect-based sentiment analysis [1], [2], which aims to extract
all the aspect terms present in sentences. For instance, given
a review sentence “The keyboard and mouse are both pretty
decent.”, ATE aims to extract the aspect terms “keyboard” and
“mouse”. The release of the SemEval datasets [3]–[5] and the
rise of deep learning techniques have greatly advanced ATE
research. The Multi-Aspect Multi-Sentiment (MAMS) dataset
[6] further increases the difficulty of the task, as each sentence
contains at least two aspects with different sentiment polari-
ties. Recent studies commonly formulate ATE as a sequence
tagging or token-level classification task. Researchers focus
on developing various neural sequence taggers. Although these
models [7]–[11] achieve satisfactory performance, they heavily
rely on in-domain labeled data. The scarcity of labeled data,
due to the high cost of annotation, remains a major challenge
for ATE.

∗ Both authors contributed equally to this research.
† Corresponding author.

Domain adaptation is a popular solution to address the
issue of data scarcity, aiming to generalize a model trained
on labeled data from a source domain to an unlabeled target
domain. Unsupervised domain adaptation specifically refers to
the scenario where labeled data are only available in the source
domain, while the target domain contains no labels during
training. In this paper, we focus on unsupervised domain
adaptation, which is a more practical setting.

Some recent domain adaptation methods [12]–[15] aim to
align the source and target domains by learning domain-
invariant feature representations. Structure Correspondence
Learning (SCL) [16] is one of the core techniques used
in learning domain-invariant feature representations for text
classification tasks. It splits the feature space into pivot and
non-pivot features. Pivot features are those that meet the
following two criteria: (a) they appear frequently in both
domains; and (b) they are highly correlated to the task labels.
Non-pivot features are those that do not satisfy at least one
of these criteria. Although pivot-based models [17]–[19] have
shown promising results in sentence-level classification tasks,
applying them effectively to token-level tasks such as ATE
remains infeasible. This is because aspect terms and opinion
words vary significantly across domains, making it difficult
to define explicit pivot features. Some methods [20]–[23]
use aspect-opinion relations as pivot features, based on the
observation that aspect terms and opinion words often co-
occur. However, these methods require either external domain
knowledge or manually labeled opinion words, and their
effectiveness heavily depends on the similarity of opinion
expressions between domains. To address this, Lekhtman et al.
[24] proposed a Category-based MLM pre-training approach
that uses aspect categories as proxy-pivot features to facilitate
domain adaptation for ATE. However, this method relies
heavily on domain-specific aspect category information.

Meanwhile, self-training could be another effective solution
for domain adaptation, which can directly learn concepts from
the target domain in a fully automatic manner without any hu-
man intervention [20]. Previous methods [25]–[28] apply self-
training by using a source-domain model to label the target-
domain data, followed by selecting a set of high-confidence
pseudo-labeled instances to further train the model. The quality
of the pseudo-labeled data is a critical factor in determining
the effectiveness of these methods. However, due to domain
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discrepancies, the pseudo labels may suffer from poor quality,
which can lead to significant performance degradation.

To overcome the aforementioned limitations, we propose
a novel Syntax-guided Aspect Term Extraction model for
domain adaptation in ATE, named SATE. We use syntactic
structure similarity as a proxy-pivot feature and combine pre-
training and self-training by the proxy-pivot feature. Specif-
ically, we first encode the syntactic structures of source-
domain texts and aggregate their aspect terms to obtain an
average syntactic structure representation. Then, we compute
the syntactic similarity between tokens and the average aspect
term. Based on syntactic structure similarities, we propose
three modules to transfer aspect terms across domains: (1)
Syntax-based Masked Language Model (SMLM): a variant of
BERT [29], where masked tokens are selected based on their
syntactic similarity to aspect terms, rather than being randomly
chosen. This module is trained on large-scale unlabeled cor-
pora from both source and target domains. (2) Syntax-based
Self-Training (SST): constructs a pseudo-labeled training set
for the target domain based on the syntactic structure similarity
and source-domain labeled data. (3) Syntax-based Loss (SL):
a weighted cross-entropy loss function that assigns greater im-
portance to tokens that are more likely to be aspect terms based
on syntactic structure during classifier training. Experimental
results on three benchmark datasets show that SATE improves
cross-domain ATE performance by at least 3.5% in Micro-F1
score on average compared to state-of-the-art baselines. The
main contributions of this paper are summarized as follows:

• We propose a novel syntax-guided domain adaptation
model for aspect term extraction, which leverages syn-
tactic structure similarity to construct cross-domain asso-
ciations without relying on external knowledge.

• To the best of our knowledge, we are the first to address
cross-domain aspect term extraction using self-training.
We also present a variant of the BERT MLM pre-training
model based on the syntactic structure.

• Extensive experiments on three benchmark datasets val-
idate the effectiveness of the proposed model, showing
consistent improvements over state-of-the-art baselines in
cross-domain aspect term extraction.

II. METHODOLOGY

A. Problem Statement

We formulate cross-domain ATE as a sequence tagging task.
The input is a sequence of tokens x = {x1, x2, ..., xn}, and
the output is a sequence of labels y = {y1, y2, ..., yn}, where
each yi ∈ {B, I,O} denotes the beginning of, inside of, and
outside of an aspect term. In the cross-domain setting, labeled
data are only available in the source domain. Given a set of
labeled data from source domain DS = {(xS

i , y
S
i )}

NS
i=1 and a

set of unlabeled data from target domain DU = {(xU
i )}

NU
i=1,

our goal is to predict token labels for unseen target test data
in target domain: yTi = f(xT

i ), D
T = {(xT

i )}
NT
i=1.

The         screen is          in          reasonable         size

det nsubj prep

pobj

amod

The          food was         very         delicious

det nsubj

acomp

advmod

DET             NN AUX        ADP          ADJ         NN

DET            NN AUX        ADV               ADJ         

Laptop:

Restaurant:

Fig. 1. Dependency tree of reviews from laptop and restaurant domains. The
brown blocks indicate that aspect terms from the two domains have the same
dependency relation, and the green block indicates that aspect terms from the
two domains have the same POS tag.

B. Syntactic Structure Similarity

Although aspect terms may vary across domains, their
syntactic roles are generally consistent [30]. We propose to
capture aspect terms in the target domain based on their
syntactic structure similarity to aspect terms in the source
domain. Part-of-speech (POS) tags and syntactic dependency
relations are employed to measure the syntactic structure
similarity between tokens. As illustrated in Fig. 1, the aspect
terms “waiter” and “screen” share the same POS tag “NN” and
the same set of dependency relations “{det, nsubj}”, indicating
high syntactic similarity. To quantify this similarity, for each
word xi, we use a one-hot vector bposi ∈ RNpos and a multi-
hot vector bdepi ∈ RNdep to represent its POS tag and syntactic
dependency relations, respectively, where Npos/Ndep indicate
the size of POS tags/syntactic dependency relation set.

To compute bdepi , we merge all dependency relations that
involve the token xi. To obtain the average syntactic structure
representation of aspect terms ā = (bpos, bdep), we aggregate
all aspect terms in the source domain: bpos =

∑A
i

bposi

NA
and

bdep =
∑A

i
bdepi

NA
, where A is the set of aspect terms, NA is the

size of A. The Syntactic structure similarity between a token
xi and ā is defined as:

Ssim(xi, ā) = cos(bposi , bpos)× cos(bdepi , bdep) (1)

where cos(, ) is the cosine similarity. We treat the syntactic
structure similarity as a proxy-pivot feature to build the
transferring modules.

C. Syntax-based Masked Language Model

We present a variant of the BERT MLM pre-training model,
referred to as the Syntax-based Masked Language Model
(SMLM), as illustrated in Fig. 2. For the standard MLM pre-
training model, all input tokens have the same probability of
being chosen for prediction. In contrast, SMLM leverages the
syntactic structure similarity between tokens and the average
aspect term from the source domain to prioritize tokens that
are more likely to be aspect terms for prediction.

To capture domain-invariant representations, SMLM is pre-
trained on large-scale unlabeled corpora from both the source
and target domains. Specifically, we choose the top α% of the
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Unlabeled corpora from the source domain and target domain

text The waiter was rude but the food was delicious
𝑆!"#(𝑥" , 𝑎) 0.0059 0.4999 0.0042 0.2878 0.0003 0.0059 0.4999 0.0016 0.0004

The [mask] was rude but the [mask] was deliciousCLS

Non-contextualized embeddings

BERT Encoder
Contextualized embeddings

The [mask] was rude but the [mask] was deliciousCLS

FC

waiter food

Fig. 2. Overall architecture of Syntax-based Mask Language Model (SMLM).

input tokens based on the similarity Ssim(xi, ā) in Eq. (1),
where α is the masking threshold. Following the standard
MLM strategy, each selected token has an 80% probability
of being replaced with the [MASK] token, a 10% probability
of being substituted with a random token from the vocabulary,
and a 10% probability of remaining unchanged.

Our token masking strategy ensures that the pre-training
language model focuses on words that are likely to be aspect
words in one of the domains. For example, given the input
sentence “The screen is in reasonable size, I really liked
it.” from the laptop domain, SMLM would choose the word
“screen”, which has a high syntactic structure similarity score
with the average aspect term. In contrast, the original MLM
randomly selects tokens for masking. By predicting these
aspect-term-likely tokens, SMLM can learn task-adaptive and
domain-invariant representations.

D. Syntax-based Self-training

Besides learning domain-invariant representation, self-
training is another promising solution for domain adaptation.
The core idea of self-training is to construct a set of high-
quality pseudo-training instances for the target domain. Differ-
ent from previous self-training methods [25]–[28], we present
a novel module called syntax-based self-training (SST). When
constructing pseudo training instances, we select a pseudo
aspect term set A from the target domain which are similar
to the aspect terms of the source domain in terms of syntactic
structure. We then replace the aspect terms in the source
domain with the pseudo aspect terms in set A to create
pseudo training instances. The detailed process is described
in Algorithm 1.

Specifically, words or phrases that present higher similarities
to the average aspect term representation ā are selected as
candidates for composing the pseudo aspect term set A. All the
selected terms are ranked according to the term frequencies,
and the most frequent ones compose the set A.

The each aspect term in the source domain is randomly
replaced by one pseudo aspect term in A to create a pseudo
training set for the target domain. For each instance, we create
one pseudo instance.

Algorithm 1 Building Syntax-based Pseudo Training Dataset
Input: The set of labeled source domain: DS ; The set of unla-

beled target domain: DU ; The syntax-similarity threshold:
σ; The size of A: β; The average syntactic structure
representation of aspect terms: ā = (bpos, bdep)

Output: The pseudo training set for target domain: Dst

1: initiate Dst = {}; A = {}
2: for instance X in DU do
3: for xi in X do
4: Ssim(xi, ā) = cos(bposi , bpos) ∗ cos(bdepi , bdep)
5: if Ssim(xi, ā) > σ then
6: A = A+ xi

7: end if
8: end for
9: end for

10: A = mostCommon(A, β)
11: for instance (X,Y ) in DS do
12: A = {a1, a2, ..., an} is the set of aspect terms
13: for a in A do
14: replace a by random(A)
15: end for

Dst = Dst + {(X,Y )}
16: end for
17: return Dst;

E. Syntax-based Loss

ATE is a token-level classification task, each token is of
different importance for classifier training. We propose to
concentrate on those tokens that are more likely to be aspect
terms in syntax. We modify the cross entropy loss with
syntactic structure similarity, named as syntax-based loss (SL).
The weighted cross entropy loss is defined as follows:

L =
∑

DS+DST

T∑
i

Ssim(xi, ā) ∗ l(yi, ŷi) (2)

III. EXPERIMENTS

A. Data & Experiment Setup

Datasets: We adopt unlabeled corpora from the Amazon
laptop reviews1 and the Yelp restaurant reviews2 to perform
SMLM pre-training model. The labeled data from the laptop
domain are taken from SemEval-2014 ABSA [3]. Following
the setting in [24], for the labeled data from the restaurant do-
main, we combine the SemEval 2014, 2015, 2016 ABSA [3]–
[5] restaurant datasets and remove the duplicated instances.
To construct a more challenging evaluation setup beyond
the SemEval datasets, we consider the MAMS dataset [6],
which contains sentences with at least two aspects of different
sentiment polarities. Detailed statistics are shown in Table I.

Settings & Implementation Details: We conduct experi-
ments on four source-target transfer pairs such as L→R using
the three domains in Table I. Following the experimental setup

1http://jmcauley.ucsd.edu/data/amazon/links.html
2https://www.yelp.com/dataset/challenge
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TABLE I
STATISTICS OF THE BENCHMARK DATASETS.

Dataset Domain Total Training Testing

L Laptop 3845 3045 800
R Restaurant 6035 3877 2158
M MAMS 5297 4297 1000

in [24], we remove R→M and M→R, as R and M are similar.
For each transfer pair, the training data consists of labeled
training data in the source domain and pseudo training data
for the target domain. Meanwhile, we use the labeled test set
from the source domain as the validation set, and the test set
from the target domain as the evaluation set. We use Spacy3

for dependency parsing. There are 51 classes of POS tags and
47 classes of dependency relations in total in the three datasets.

To implement the SMLM pre-training model, we use the
BERT-Base-Uncased model of the Hugging-Face Transform-
ers package [31]. We fine-tune all BERT layers and mask
full words instead of sub-words to reduce the influence of the
tokenizer. The masking threshold is set to α = 15, and pre-
training is conducted for 2 epochs using the AdamW optimizer
with a learning rate of 3e-5, an epsilon of 1e-8, and a batch
size of 16. After the pre-training phase, the fully connected
layer used in the SMLM objective is discarded. To construct
the pseudo training data for the target domain, we set the
syntax similarity threshold to σ = 0.45 and limit the size of
the pseudo aspect term set to β = 300.

To facilitate training on our ATE task, we add an additional
MLP layer on top of the pre-trained language model and train
it using the AdamW optimizer with a learning rate of 2e-5,
an epsilon of 1e-8, and a batch size of 8.

Evaluation Metric: Following previous studies [24], [30],
[32], we evaluate the models using Micro-F1, where only exact
matches are considered correct. All experiments are repeated
nine times and the average results are reported.

B. Baselines

We compare our model with several state-of-the-art models,
as follows:

• BERT-Cross: BERT-Cross post-trains BERT on a com-
bination of Yelp and Amazon corpus.

• BERT-Base-UDA and BERT-Cross-UDA [32]: UDA is
a Transformer-based neural network that performs fine-
tuning with syntactic-driven auxiliary tasks and a modi-
fied attention mechanism. BERT-Base-UDA and BERT-
Cross-UDA are designed differently in the initialization.
BERT-Base-UDA is initialized by the BERT-Base model
while BERT-Cross-UDA is initialized by BERT-Cross.

• Combridge [30]: A bridge-based convolution neural
network that incorporates syntactic structures and cross-
semantic information, combined with an adversarial com-
ponent.

3https://spacy.io

TABLE II
MAIN RESULTS FOR CROSS-DOMAIN ATE ON FOUR SOURCE-TARGET

PAIRS.

Methods M→L L→M R→L L→R AVG.

BERT-Cross 35.30 29.82 45.89 39.32 37.48
BERT-Base-UDA 36.52 39.59 48.32 49.52 43.50
BERT-Cross-UDA 41.29 45.62 53.51 56.12 49.14

Combridge 39.98 47.42 53.32 66.20 51.73
DILBERT 43.72 58.96 56.07 61.04 54.95

SATE 48.11 65.38 56.26 69.26 58.45

TABLE III
MAIN RESULTS FOR CROSS-DOMAIN ABSA ON FOUR SOURCE-TARGET

PAIRS.

Methods M→L L→M R→L L→R AVG.

RNSCN 23.74 24.63 26.63 35.65 27.66
AD-SAL 28.49 26.87 34.13 43.04 33.13

BERT-Cross 34.60 25.75 39.72 45.4 36.37
BERT-B-DANN - - 30.41 41.63 -
BERT-E-DANN - - 38.83 47.39 -

BERT-Base-UDA 27.19 27.25 33.68 45.46 33.40
BERT-Cross-UDA 32.47 33.03 43.95 49.52 39.74

SATE 46.65 44.75 54.55 63.11 52.27

• DILBERT [24]: A Transformer-based model that per-
forms category-based masked language modeling and a
category proxy prediction task. It incorporates aspect cat-
egory information from an external domain and achieves
the state-of-the-art performance in cross-domain aspect
term extraction.

• RNSCN [22]: A recursive neural structural correspon-
dence network that incorporates syntactic structures.

• AD-SAL [33]: A recursive neural network which can
automatically capture aspect-opinion latent relations to
achieve token-level adversarial adaptation.

• BERT-Base-DANN and BERT-Cross-DANN [34]:
DANN is a domain-adversarial training neural network.
Similarly, BERT-Base-DANN and BERT-Cross-DANN
are initialized by BERT-Base and BERT-Cross respec-
tively.

C. Results

Table II shows the comparison results of cross-domain
ATE for all the methods. As can be seen, the proposed
SATE achieves the best performance in terms of the exact-
match F1 metric. For example, the SATE model significantly
improves the average performance of DILBERT from 54.95%
to 58.45%. Specifically, on the more challenging transfer pairs
L→M and L→R, SATE improves by 6.42% and 8.22% from
DILBERT, respectively.

Table III shows the comparison results for cross-domain
ABSA for all the methods. As can be seen, the proposed SATE
achieves the best performance in terms of the exact-match
F1 metric. Specifically, BERT-Cross-UDA performs poorly on
more challenging transfer pairs such as M→L and L→M (i.e.,
column 1∼2), only achieving 32.47% and 33.03%, respec-
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BERT-Cross SMLM

on food

food service

we pizza

she order

the waiter

(1) The MASK came out and it looked like it 

had been sitting in the back a while.  MASK: 

food

BERT-Cross SMLM

! staff

. team

mask dog

team man

? name

(2) Do yourself a favor and engage with 

the wait MASK! MASK: staff

MASK1 MASK1

BERT-Cross SMLM BERT-Cross SMLM

mask disk mask memory

##am mask masks mask

##k configuration ##k configuration

##me shell sensor design

disk record memory function

(3) Pre-instaled software is fine, Hard MASK MASK is more than enough.  

MASK1: disk, MASK2: memory

Fig. 3. Top five predictions of BERT-Cross and SMLM.

tively. In contrast, our model exhibits promising transferability
on the more challenging transfer pairs, achieving 46.65% and
44.74%, respectively.

IV. ANALYSIS

To compare the ability of learning task-adaptive represen-
tation, we pre-train the SMLM model and the BERT-Cross
model on unlabeled corpora from the Amazon laptop reviews
and the Yelp restaurant reviews, and test them on sentences
from these domains. Fig. 3 shows the comparison of the top
five predictions of BERT-Cross and SMLM. Text (1) and
(2) are from unlabeled Yelp restaurant reviews, and (3) is
from unlabeled Amazon laptop reviews. It is obvious that the
prediction of SMLM is more similar to the mask token than
BERT-Cross. Our token masking strategy facilitates the BERT
model to learn task-adaptive representations for aspect term
extraction.

V. CONCLUSION

In this paper, we propose a novel domain adaptation method
for aspect term extraction. We enhance the transferring ability
by incorporating the syntactic structure similarity into the pre-
training model and the self-training model. Extensive experi-
ments on three benchmark datasets demonstrate the superiority
of our approach over existing methods in cross-domain aspect
extraction.
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