
Cancer Classification with Multi-task Deep Learning

Qing Liao†, Lin Jiang†, Xuan Wang†, Chunkai Zhang†, Ye Ding‡
† Department of Computer Science and Technology, Harbin Institute of Technology (Shenzhen)

‡ Guangzhou HKUST Fok Ying Tung Research Institute, The Hong Kong University of Science and Technology
liaoqing@hit.edu, zoeljiang@gmail.com, wangxuan@cs.hitsz.edu.cn, ckzhang812@gmail.com, yeding@ust.hk

Abstract—Microarray technique can generate a large amount
of gene expression profiles for thousands of genes simultaneously.
The gene expression data has been widely used in disease diag-
nosis and deep learning approach has achieved great successes in
this task. However, the deep learning approach may fail when the
expression data for a particular tumor is insufficient for training
an effective model. In this paper, we propose a novel multi-task
deep learning (MTDL) to overcome the aforementioned deficiency
by leveraging the knowledge among multiple expression data
of related cancers. MTDL learns local features from each task
with some private neurons, and learns shared features for all
tasks simultaneously with some shared neurons, and learns to
inference for each task separately in the end layer. Since MTDL
leverages the expression data of multiple cancers, it can learn
more stable representation for each cancer even its expression
profiles are inadequate. The experimental results show that
MTDL significantly improves the performance of diagnosing each
type of cancer when it jointly learns from the expression data of
twelve cancer datasets.
Index Terms—Multi-task learning, Deep learning, Cancer di-

agnosis,

I. INTRODUCTION

With the rapid development of microarray technologies, it

becomes possible to monitor the expression levels of tens of

thousands genes in parallel. The gene expression data have

been widely used to classify tumors as it greatly saves both

expenses and time, and have been used to delineate the disease

pathology as its ability to precisely detect the physiological

process. However, as the progress of genomic research, the

volume of gene expression data has continuously outstripped

the ability of human beings to analyze it. Towards this end,

the machine learning methods have been successfully applied

to analyze gene expression data and automatically classify

tumors.

In the past decades, several machine learning algorithms

have been applied to classify different types of cancers by

microarray gene expression data. The earliest machine learning

methods is decision tree (DT) [1] which uses distinctive

sequence features of known diseases proteins compared to

all human proteins. K-nearest neighbor (k-NN) classifier and

Bayesian classifier (NB) [2] are also used to identify human

diseases by classifying multiple types of genomic. In this

direction, Bharathi [3] used Analysis of Variance (ANOVA)

rank scheme on important genes and tested the classification

capability using Support Vector Machine (SVM). Hu et al.
[4] proposed Maximally Diversified Multiple Trees (MDMT)

algorithm which focuses on ensemble a set of unique trees

in the decision committee. Halder et al. [5] proposed active

learning based on fuzzy k-nearest neighbor (ALFKNN) which

first applies unlabeled samples to get the labels from experts,

then the labeled “informative samples” can be iteratively added

to the training samples to improve the prediction accuracy.

Begum et al. [6] incorporated AdaBoost and linear SVM

(ADASVM) as a component classifier, and shown that it has

better performance than the state-of-the-art classifiers.

However, the above techniques are difficult to learn a good

representation of cancer when the tissue sample of a specific

cancer are insufficient. The insufficiency of tissue samples has

two situations in the modeling learning process: (1) Samples

of rare cancers (some only occurring a few people in each

year) are much difficult to obtain than common cancers.

Moreover, the number of patients tissues is much fewer than

the normal peoples tissues. The insufficiency problem of

cancer samples leads classifiers to have not enough data to

learn a stable representation of cancer pattern. (2) Cancer

samples from different data sources are hard to integrate

which aggravates the insufficiency problem. For example,

Leukemia is one of the most common type of cancer in

the world which has caused 353,500 deaths in 2015 [7].

Therefore, many research institutions pay their attentions to

study the Leukemia for human beings health. However, the

data sources from different research institutions cannot be

integrated together, because different research institutions have

different experimental conditions, and they choose different

gene features and even tag different cancer labels. In the tested

cancer datasets, there are three Leukemia datasets from three

data sources. The first Leukemia dataset classifies Leukemia

samples into two types (NPMI1 + and NPMI1 -) while the

second Leukemia dataset classifies samples into four types

(MP, HDMTX, HDMTX+MP and LDMTX+MP) because the

first dataset classifies based on gene point and second dataset

classifies based on drug responses in human beings leukemia

cells. Moreover, the first Leukemia dataset has 54,675 gene

features and the third Leukemia dataset has 54,613 gene

features because different research institutions may choose

different gene features to investigate the same cancer according

to their domain knowledge. Because the above restrictions, the

insufficiency problem usually occurs in common cancer types

even the cancer has many datasets.

Most traditional classification algorithms cannot achieve

satisfactory performance when there are only a few samples.

Dimension reduction [8], [9] and feature selection methods

[10]–[16] are proposed to indirectly solve the reverse impact

of the insufficiency problem in the datasets. Fakoor et al.
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[10] and Liu et al. [11] firstly utilized PCA to project gene

expression data onto a low-dimensional subspace to relieve

the imbalance problem between gene features and samples,

and then utilized deep learning method to enhance cancer

diagnosis and classification. Moreover, Isabelle et al. [16]
applied the support vector machine (SVM) to select gene

features to improve cancer classification. Relieving imbalance

via dimension reduction and feature selection can greatly

reduce thousands of features so that the model can choose

the most important genes during learning and can indirectly

relieve the reverse influence of the insufficiency of samples.

However, all existed methods can only indirectly relieve the

insufficiency problem. It is still challenging to fully utilize

small-scale datasets from different cancers in a model.

In order to directly solve the insufficiency problem, we

propose a novel Multi-task Deep Learning (MTDL) algorithm

which is inspired by multi-task learning and deep learning.

MTDL can not only utilize the small-scale datasets from

different cancers simultaneously but also employ the closely

related datasets to help learning a better representation and

enhance the classification performance. Specifically, MTDL

simultaneously learns local features from each task (cancer)

and shared features from multiple tasks via deep neural

network to incorporate both local features and shared features

to boost the performance. Our contributions are summarized

as below:

1) We propose a MTDL algorithm which can directly solve

the insufficiency problem of data and largely enhance the

performance of classification.

2) MTDL can integrate datasets of closely related cancer

from various data sources to enhance the classification

performance because the hidden representation of the

same cancer types are similar.

3) MTDL can simultaneously utilize closely related cancer

datasets so that other hidden cancer representation can

provide more information to small-scale cancer datasets

to enhance the classification performance.

The rest of the paper is organized as follow. Section II

briefly reviews the related techniques and Section III presents

the multi-task deep learning (MTDL) algorithm. Section IV

evaluates the classification performance of MTDL and the rep-

resentative algorithms on twelves real-world cancer datasets.

Finally, the concluding remark is given in Section V.

II. RELATED WORK

This section will briefly reviews multi-task learning (MTL)

and its related works. Multi-task learning [17] has been

thoroughly proven to improve the generalization performance

significantly when there is not enough number of samples

to train individual task [18]. Comparing with single task

learning, multi-task learning can use related tasks to learn

information to help the tasks when the number of samples

is rather insufficient. Figure 1 demonstrates the differences

between single-task learning model (STL) and multi-task

learning model (MTL). In the Figure 1 (a) all four datasets

have no connection and each task will be trained separately,

Fig. 1. (a) Single-Task Learning, (b) Multi-Task Learning of four tasks.

because single-task learning assumes that the training samples

are drawn independently from a particular distribution. Hence

the single-task learning totally ignores the relationship among

related tasks. In contrast to single-task learning, the multi-task

learning in the Figure 1 (b) assumes that some tasks may be

highly correlated which implies that the information learned

from one task can be leveraged to another. Hence multi-task

learning will jointly train four models. Multi-task learning is

not simply pooling all tasks and treating them as a single task

due to the strategy of isolating each task. Therefore, multi-task

learning uses a shared layer (the second layer in the Figure 1

(b)) to transfer tasks representation and learn the classifiers of

each task in parallel to output each tasks classification result.

The transferred representation from related tasks is particularly

important when the training data of a specialized task only

contains a limited amount of samples for learning its classifier.

Recently, multi-task deep learning methods which cooperate

multi-task learning and neural network together are shown suc-

cessfully in computer vision [19]–[25], bioinformatics [26]–

[28], climate analytics [29], etc. Zhang et al. [19] proposed a
tasks-constrained deep convolution network (TCDCN) model

to jointly optimal facial landmark detection with a set of

related tasks, e.g., head pose estimation and facial attribute

inference. Rejeev et al. [20] proposed a HyperFace architec-
ture based on CNN which can simultaneously conduct face

detection, facial landmark localization, head pose estimation

and gender recognition from a given image. The multi-task

model consists of two components including pose regression

and body-part detection via sliding-window classifiers. Abrar

et al. [21] proposed a multi-task CNN model to better predict

attributes in images, for example, whether wearing necktie

or wearing a blue dress, using deep convolutional neural

networks (CNN). Tao et al. proposed a deep model based

on transfer learning and multi-task learning for biological

image analysis [26], [27] on the domain-specific biological

images. The model first uses multiple CNN models to pre-

train a set of parameters on the ImageNet dataset and then

transfers the learned parameters with the mouse brain images.

At last, multi-task model is used to output each tasks result.

Although these DNN models based on multi-task learning

shows its success in computer vision and biomedical image
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analysis in the past five years, all the existed methods use

deep neural network and multi-task learning model separately.

Specifically, all these method applies neural network to learn

shared feature maps in the low layers, then splits features and

outputs classification performance of each task via multi-task

learning in the top layers. To remedy the above deficiencies,

we propose a multi-task deep learning (MTDL) algorithm

which cooperates multi-task learning in each hidden layers via

the deep neural network rather than split these two models in

the low and high layers separately. The advantage of MTDL

is that cooperating multi-task learning during deep neural

network can learn more shared representations than using only

multi-task learning in the high layers so that it can boost the

classification performance.

III. MULTI-TASK DEEP LEARNING

In this paper, we propose a novel multi-task deep learning

(MTDL) algorithm for cancer classification. The structure

of the network is shown in Figure 2. The proposed MTDL

shares information across different tasks by setting a so-called

“shared hidden units”. In Figure 2, the red shapes signify

shared hidden units of all the task sources in each layer, and

the triangle, square and pentagon of rest colors signify local

hidden units of each task source in different layers. In this

work, we design two hidden layers and one soft-max output

layer. It receives n groups of input units and each group

corresponds to one task. In the first hidden layer, there are n
groups of local hidden units correspond to n task source and a
single group of shared units, which receives from all n groups
of input units. Similar to the first hidden layer, the second

hidden layer contains n groups of local hidden units and one
group of shared units. In contrast to the first hidden layer, each

group of local hidden units in the second hidden layer receives

not only the activations of corresponding local hidden units in

the first hidden layer, but also the activations of the shared

units in the first hidden layer. The shared hidden units in the

second hidden layer receive activations of the whole units in

the first hidden layer, including local hidden units and shared

hidden units.

Let x1, x2, · · · , xn denote the inputs of n tasks. For the first
hidden layer, the activations of each group of local hidden units

a1i are calculated by

a1i = σ(W 1
lixi + b1i ), i = 1, · · ·n (1)

where the upscript of a1i denotes the index of layer and the
subscript of a1i denotes the index of task source. Activation
function is the rectified linear unit (ReLU), i.e., σ(x) =
max(0, x), and W 1

li is the local weight of edge between the

#1 task source and the local hidden units a1i . Moreover b
1
i is

the bias for the i-th group of local hidden units. The activations
of the first shared hidden units s1 are calculated by

s1 = σ(

n∑

i=1

W 1
sixi + b1s), (2)

Fig. 2. The proposed multi-task deep neural network structure. In the two
hidden layers, the red units denote the shared hidden units and the units of
the rest color denote the local hidden units.

where W 1
si is the shared weight of edge between a

1
i and s

1.

The b1s is the bias of the shared hidden units s1, and the

activation function is ReLU.

For the second hidden layer, the activations of each group

of local hidden units a2i are calculated by

a2i = σ(W 2
lia

1
i +W 2

sis
1 + b2i ), i = 1, · · ·n (3)

where W 2
li is local weight of edge between a1i and a2i . The

W 2
si is the share weight of edge between all the first local unit

and the s2. The b2i is the bias for the i-th group of local hidden
units in the second layer. The activations of the shared hidden

units s2 are calculated by

s2 = σ(

n∑

i=1

W 2
siai +W 2

s s
1 + b2s), (4)

where W 2
s is the weight of edge between s

1 and s2.
For the output layer, the output aoi of each task is calculated

by

aoi = sigmoid(W o
lia

2
i +W o

sis
2 + boi ), i = 1, · · ·n, (5)

whereW o
li is the local weight of edge between a

2
i and a

o
i .W

o
si

is the weight of edge between s2 and aoi . Moverover, b
o
i is the

bias for the output units of the i-th task, and the activation
function is defined as sigmoid(x) = 1/(1 + e(−x)).
The advantages of setting local units and the shared units

are that each task can learn private representation from its

local units perform classification. Different task learns separate

private representation, because the local units preserve the

feature of each separate task. On the other hand, the shared

units learn shared representation from the whole datasets to

leverage the information obtained from the microarray system.

It is the shared units that boost the performance of each

task because they leverage information through all tasks. In

summary, MTDL can not only to preserve each tasks local

features but also utilize the shared knowledge to provide stable

features for all tasks. The following experiments confirm this

point.
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TABLE I
SUMMARIZATION OF THE USED GENE EXPRESSION DATA.

Cancer Description #Features #Samples Labels

Task 1 AML [30] 54613 2341 1=AML, 2=MDS

Task 2 Adenocarinoma [31] 34749 193
1=adenocarcinoma,
2=squamous cell carcinoma

Task 3 Breast Cancer [32] 30006 1047 1=non-IBC, 2=IBC

Task 4 Leukemia [33] 54675 2284 1=NPM1+, 2=NPM1-

Task 5 Leukemia [34] 12600 658
1=MP, 2=HDMTX,
3=HDMTX+MP, 4=LDMTX+MP

Task 6 AML [35] 12625 625 1=Complete Remission, 2=Relapse

Task 7 Seminoma [36] 12625 618 1=state I, 2=state II and III

Task 8 Ovarian Cancer [37] 15154 153 1=cancer, 2=normal

Task 9 Colon Cancer [38] 2000 32 1=cancer, 2=non-cancer

Task 10 Medulloblastoma [39] 7129 30 1=class 0, 2=class 1

Task 11 Prostate Cancer [40] 12600 102 1=tumor, 2=normal

Task 12 Leukemia [41] 54613 2389 1=NPM1+, 2=NPM1-

TABLE II
THE ACCURACIES OF CLASSIFYING 12 CANCERS BY USING THE NEURAL NETWORK IN FIGURE 2 WITHOUT THE SHARED HIDDEN LAYERS, I.E.,

SEPARATELY TRAINING A DNN ON EACH TASK.

Cancer k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9 k=10 Mean Std. Dev. Median
Task 1 0.6996 0.6996 0.747 0.6996 0.6552 0.7552 0.697 0.6496 0.7552 0.6947 0.70527 0.03743 0.6996
Task 2 1 1 1 1 1 1 1 1 1 1 1 0 1
Task 3 1 1 1 1 1 1 1 1 1 1 1 0 1
Task 4 0.5817 0.5817 0.5817 0.5817 0.6234 0.5817 0.5817 0.5817 0.6298 0.5836 0.59087 0.0189 0.5817
Task 5 0.2335 0.2502 0.2335 0.2169 0.2501 0.2335 0.2501 0.2335 0.2169 0.2169 0.23351 0.01357 0.2335
Task 6 0.9 0.9 0.9 0.9 0.8 0.9 0.9 0.9 0.9 0.8 0.88 0.04216 0.9
Task 7 0.7335 0.7668 0.8001 0.8001 0.7001 0.6335 0.6001 0.7001 0.6001 0.7668 0.71012 0.07706 0.7168
Task 8 0.68 0.68 0.68 0.68 0.68 0.68 0.68 0.68 0.68 0.68 0.68 0 0.68
Task 9 0.9667 1 1 1 1 0.9667 0.9667 1 1 1 0.99001 0.01609 1
Task 10 0.9 0.9 0.8667 0.8667 0.8001 0.9333 0.9333 0.9333 0.9 0.9333 0.89667 0.04285 0.9
Task 11 1 1 1 1 1 1 1 1 1 1 1 0 1
Task 12 0.6871 0.6871 0.6871 0.6871 0.6871 0.6871 0.6871 0.6871 0.7176 0.6828 0.68972 0.00989 0.6871

TABLE III
THE ACCURACIES OF CLASSIFYING 12 CANCERS WITH THE SHARED HIDDEN LAYERS BY USING MTDL.

Cancer k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9 k=10 Mean Std. Dev. Median
Task 1 1 1 0.9526 1 1 1 1 1 0.95 1 0.99026 0.02054 1
Task 2 1 1 1 1 1 1 1 1 1 1 1 0 1
Task 3 1 1 1 0.9 1 0.95 1 1 1 1 0.985 0.03375 1
Task 4 1 0.9462 0.923 1 0.9462 1 1 1 0.95 1 0.97654 0.03112 1
Task 5 1 0.9333 0.9333 0.8666 1 0.8666 0.95 1 1 0.9333 0.94831 0.05241 0.94165
Task 6 1 1 1 1 1 1 1 1 1 1 1 0 1
Task 7 1 1 1 1 0.95 1 1 1 1 1 0.995 0.01581 1
Task 8 1 1 0.88 0.94 1 0.96 0.96 1 0.99 1 0.973 0.03945 0.995
Task 9 1 0.9667 1 1 1 1 1 1 1 1 0.99667 0.01053 1
Task 10 1 0.9667 1 0.9333 1 1 1 1 1 1 0.99 0.02250 1
Task 11 1 1 1 1 1 1 1 0.9667 0.9333 1 0.99 0.02250 1
Task 12 1 1 0.9696 0.9652 0.9392 1 0.9696 0.9696 1 0.9652 0.97784 0.02103 0.9696

IV. EXPERIMENTS

We evaluate the effectiveness of MTDL comparing with the

two basic deep learning methods i.e., deep neural network

(DNN) and sparse auto-encoder for twelve cancers with the 10

folds leave-one-out cross-validation. The used gene expression

data are summarized in Table I.

There are two characteristics in the Table I. First, we

can find that there are three Leukemia datasets (Task 4, 5,

12). The Task 4 and Task 5 cannot be utilized at the same

time in a traditional computation model, because they have

different Leukemia labels under different domain knowledge.

Moreover, we cannot simply integrated Task 4 and Task 5 to

enlarge the cancer datasets because the number of features are

different (54675 vs. 54613) because different research institute

choose different gene features to investigate samples even they

study the same cancer. Unlike the traditional model, MTDL

can deal with these cancer datasets simultaneously, leverage

information among them to learn a better representation of

each cancer and output classification result of each cancer,

simultaneously. For example, MTDL can classify Task 4 into
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TABLE IV
THE ACCURACIES OF CLASSIFYING 12 CANCERS BY USING MTDL,

SEPARATE DNN, AND SPARSE AUTO-ENCODER.

MTDL Separate DNN Separate auto-encoder
Task 1 0.99±0.021 0.705±0.037 0.744±0.062
Task 2 1±0 1±0 0.912±0.18
Task 3 0.985±0.034 1±0 0.867±0.219
Task 4 0.977±0.031 0.591±0.019 0.561±0.024
Task 5 0.948±0.052 0.234±0.014 0.468±0.23
Task 6 1±0 0.88±0.042 0.817±0.298
Task 7 0.995±0.016 0.710±0.077 0.350±0.337
Task 8 0.973±0.039 0.68±0 0.755±0.135
Task 9 0.997±0.011 0.990±0.016 0.667±0
Task 10 0.990±0.021 0.897±0.043 0.667±0
Task 11 0.990±0.021 1±0 0.975±0.079
Task 12 0.978±0.021 0.690±0.010 0.692±0.108

two labels and classify Task 5 into four labels at the same time.

Second, it shows that the number of features distinguished

significantly among different tasks, and the number of samples

also distinguished significantly among tasks. For example, the

AML dataset (Task 1) has 2341 samples and the Medulloblas-

toma dataset (Task 11) has only 32 samples. MTDL model

use multiple shared hidden layers to learn more representation

information from 12 cancer datasets, and the representations

from the shared hidden layers can help Medulloblastoma

dataset to achieve better classification performance.

Table II gives the classification accuracies of twelve cancers

by a traditional DNN on the gene expression data of each

cancer tissue. We choose the 10-fold leave-one-out method to

evaluate DNN, each dataset is divided into ten folds, where

nine folds for training and one fold for testing in each trial.

k is the index of the fold and each fold runs 10 trials to

obtain an averaged accuracy. The DNN model receives twelve

cancer datasets separately and output classification results one

by one. Since traditional DNN model ignores the similarity

information between related cancer datasets and the classifi-

cation performance will be rather poor if the cancer samples

are insufficient. We can find the DNN has very high accuracy

results in Task 2, 3, 9, 10 and 11, because there are only two

labels in these cancer datasets and these samples are very easy

to assign to each labels. By contrary, Leukemia datasets (Task

4, 5 and 12) do not achieve good classification performances

comparing with other cancer dataset. There are two reasons:

(1) it is still hard to accurately diagnosis Leukemia because

the pattern of each Leukemia label are ambiguous, and (2)

Task 5 has more labels, i.e., four labels, than other tasks so

that its accuracy is much lower than other tasks.

The accuracy results of twelve cancers by sparse auto-

encoder of each cancer tissue are similar because the sparse

auto-encoder also ignore to use shared knowledge to improve

the classification performance. Due to the limited space, we

do not depicted the details in paper.

Table III gives the classification accuracies of twelve cancers

by MTDL on the gene expression data of each cancer tissue.

Unlike DNN and sparse auto-encoder, MTDL processes mul-

tiple cancer datasets (tasks) simultaneously so that MTDL can

fully take advantages of similar hidden information between

all the datasets (cancers) to improve each tasks performance.

Table III shows that the accuracies of Leukemia datasets

(Task 4, 5 and 12) has largely improvement (more than 20%)

compared with DNN and sparse auto-encode, because MTDL

can utilized these datasets at the same time to relieve the

insufficiency problem of the Leukemia dataset. Moreover,

MTDL also achieves more than 20% improvement in the Task

7 and Task 8, because other cancer dataset provides more

representation information via shared layer to help Task 7 and

Task to learn a better representation and enhance the classifi-

cation result. At last, MTDL has satisfactory performance on

the rest cancer datasets, some datasets have clean pattern to

classify so that the classification result of all the three methods

are good. However, MTDL still has the highest performance

in most datasets because MTDL simultaneously utilizes all the

cancer datasets and learning shared representations through the

shared layers can enhance the classification performance of

most tasks. Table V summarizes the accuracies of classifying

twelve cancers by using MTDL, separate DNN, and sparse

auto-encoder. The experimental results show that the proposed

MTDL algorithm can leverage information among multiple

cancer classification tasks without neither pre-training nor loss

of information.

Table IV summarizes the accuracies of classifying twelve

cancers by using MTDL, separate DNN, and sparse auto-

encoder, the experimental results show that the proposed

MTDL approach can leverage information among multiple

cancer classification tasks without neither pre-training nor

dimension reduction.

V. CONCLUSION

The gene expression data plays an important role in precise

medicine because it simultaneously measures the expression

levels of thousands of genes. However, for cancer classi-

fication, the expression data of a particular cancer might

be limited. We propose a novel multi-task deep learning

method (MTDL) to classify multiple cancers simultaneously

and enhance the classification performance of each cancer by

leveraging knowledge through shared layers. MTDL method

can process multiple datasets without pre-integrate at the same

time even if each datasets has different class labels, features or

samples. With the help of knowledge transfer, the classification

accuracies of twelve cancers with few samples per cancer are

significantly improved.
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