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Abstract—Multitask learning (MTL) is a powerful technique
for jointly learning multiple tasks. However, it is difficult to
achieve a tradeoff between tasks during iterative training, as
some tasks may compete with each other. Existing methods man-
ually design specific network models to mitigate task conflicts,
but they require considerable manual effort and prior knowl-
edge about task relationships to tune the model so as to obtain
the best performance for each task. Moreover, few works have
offered formal descriptions of task conflicts and theoretical expla-
nations for the cause of task conflict problems. In this article, we
provide a formal description of task conflicts that are caused by
the gradient interference problem of tasks. To alleviate this issue,
we propose a novel model-agnostic approach to mitigate gradi-
ent interference (MAMG) by designing a gradient clipping rule
that directly modifies the interfering components on the gradient
interfering direction. Specifically, MAMG is model-agnostic and
thus it can be applied to a large number of multitask models. We
also theoretically prove the convergence of MAMG and its supe-
riority to existing MTL methods. We evaluate our method on a
variety of real-world large datasets, and extensive experimental
results confirm that MAMG can outperform some state-of-the-art
algorithms on different types of tasks and can be easily applied
to various methods.

Index Terms—Deep learning, gradient interference, multitask
learning.

I. INTRODUCTION

WHILE deep learning has shown surprising promise in
enabling machines to learn more complex tasks, the

Manuscript received 11 August 2022; revised 18 October 2022; accepted
10 November 2022. Date of publication 6 December 2022; date of cur-
rent version 22 November 2023. This work was supported in part by
the National Key Research and Development Program of China under
Grant 2020YFB2104003; in part by the National Natural Science Foundation
of China under Grant 62076079; and in part by the Guangdong Major Project
of Basic and Applied Basic Research under Grant 2019B030302002. This arti-
cle was recommended by Associate Editor Q. Shen. (Corresponding author:
Qing Liao.)

Heyan Chai, Zhe Yin, and Binxing Fang are with the Department
of Computer Science and Technology, Harbin Institute of Technology
(Shenzhen), Shenzhen 518055, Guangdong, China (e-mail: chaiheyan@
stu.hit.edu.cn; yinzhe@stu.hit.edu.cn; fangbx@cae.cn).

Ye Ding is with the School of Cyberspace Security, Dongguan University
of Technology, Dongguan 523808, China (e-mail: dingye@dgut.edu.cn).

Li Liu is with the College of System Engineering, National University
of Defense Technology, Changsha 410073, Hunan, China (e-mail:
dreamliu2010@gmail.com).

Qing Liao is with the Department of Computer Science and Technology,
Harbin Institute of Technology (Shenzhen), Shenzhen 518055, Guangdong,
China, and also with the Department of New Networks, Peng Cheng
Laboratory, Shenzhen 518055, Guangdong, China (e-mail: liaoqing@
hit.edu.cn).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TCYB.2022.3223377.

Digital Object Identifier 10.1109/TCYB.2022.3223377

large number of training data requirements of existing deep
learning models make it difficult to learn a great variety of
capabilities in real-world scenarios, especially when all tasks
are learned independently from scratch. A straightforward
approach to address this issue is to train a network on all
tasks jointly, with the aim of leveraging the shared network
structure across tasks to improve the performance of all tasks
and achieve greater efficiency than training tasks individually.
To some extent, training all tasks jointly can help tasks with
limited data obtain better performance, as they can capture
the shared information from other joint tasks. Caruana [1]
proposed a new learning paradigm called multitask learn-
ing (MTL), which jointly learns all tasks to obtain superior
performance over learning each task independently. Under
the assumption that seemingly unrelated real-world tasks have
strong dependencies due to the existing of shared processes,
and a similar way of generating data [2], MTL has achieved
great success in various research fields, such as image recog-
nition [3], [4], [5], [6], autonomous driving [7], [8], disease
diagnosis [9], [10], [11], and natural language processing [12],
[13], [14]. Therefore, MTL plays a vital role in the actual
application of deep learning.

However, learning multiple tasks simultaneously is a dif-
ficult optimization problem that can result in worse overall
performance compared with training tasks individually [15].
We assume that the worse overall performance of the MTL
model is caused by the imbalanced relationships between joint
training tasks; that is, different tasks may compete with each
other during training. This task conflict problem leads to poor
data efficiency, leading to the degraded performance of all
tasks.

Most prior works [16], [17], [18], [19], [20], [21], [22]
have focused on designing customized network architecture
to eliminate the gap of the gradient between tasks to alle-
viate the task conflict problem for different tasks. Moreover,
auxiliary task-based approaches [13], [23], [24], [25] are ded-
icated to exploring the relationship between tasks, with the
aim of finding more relevant auxiliary tasks to avoid gradient
interference between tasks. The two aforementioned types of
methods heavily rely on considerable manual effort, such as
hand-designed architecture and hand-selected auxiliary tasks.
More recently, we have seen a shift of paradigm in MTL,
where a kind of gradient projection approach (PCGrad [15])
has been proposed to balance the relationship between joint
training tasks. PCGrad simply selects the normal plane of the
other task gradient as the conflicting plane, which can result
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Fig. 1. Illustration of gradient interference problem on a 2-D MTL system.
The green and blue arrows denote the gradient vectors of tasks A and B,
∇θ t′LA and ∇θ t′LB, respectively. The red arrow, �g denotes the gradient
descent direction of the entire multitask model, and θ∗ is the optimal model
parameters. (a) Difference in the gradient magnitudes of tasks A and B may
be much larger, which indicates that task A and task B compete with each
other. (b) Angle between the two task gradients may be an obtuse angle on
the 2-D space, and the difference in gradient magnitudes is generally smaller,
which also indicates that the occurrence of gradient interference. The relative
magnitudes of gradients of tasks are on the same scale. θ0 and θ t represent
the model parameters of the 0th and t-th iteration, respectively. See text in
Section I for details. This figure is best viewed in color.

in a larger task bias when the projected task gradient direction
is close to the gradient of the MTL model. Consequently, it
can lead to worse overall performance of all learning tasks
due to the poor choice of conflict plane. In this work, we use
task gradient interference to formally describe the task con-
flict problem and then propose a novel gradient clipping rule
to mitigate the task conflict problem.

To better illustrate the issue of gradient interference, we
take two tasks as examples, shown in Fig. 1, to illustrate
how the gradient interference problem occurs. As shown in
Fig. 1, the MTL model converges to the position where it is
far from the optimal solution during optimization. Fig. 1(a)
illustrates that the difference between the gradients of tasks A
and B is large in terms of magnitude, which can cause network
to focus on training task A and thus result in insufficient train-
ing for task B. Consequently, the overall performance of the
MTL model will be degraded. Fig. 1(b) illustrates that the
difference between the gradients of tasks A and B is large
in terms of direction, which can cause the gradients of these
two tasks to cancel each other out in certain directions. Such
a situation can also lead to the degraded performance of the
MTL model. In this article, we refer to the above situations as
gradient interference. This article aims to mitigate the gradi-
ent interference problem to obtain better performance for all
tasks.

Therefore, we argue that a more efficient way to mitigate
the gradient interference problem is to modify the gradients
directly so as to eliminate gradient conflicts. In this article,
we propose a novel model-agnostic approach to mitigate gra-
dient interference (MAMG) for improving the performance
of all tasks. First, we give a formal definition of gradient
interference. If the gradient interference problem exists, we
will mitigate gradient interference by clipping the interfering
gradient component on the gradient interfering direction,
preventing the conflict gradient component from degrading
the performance of the multitask model. Then, we theoreti-
cally prove the convergence of MAMG and its superiority to

standard MTL methods. Moreover, MAMG can be applied to
other models to improve its performance because it can lead to
convergence to the minimizer of the loss function. The main
contributions of this article can be summarized as follows.

1) We formally describe the gradient interference problem
and give a concrete definition of gradient conflict, which
has rarely been discussed in previous works.

2) We propose a novel model-agnostic approach to mitigate
gradient interference for MTL models by designing a
gradient clipping rule to directly modify the interfering
components on the gradient interfering direction, which
is general and not dependent on the relationship between
tasks.

3) We theoretically prove that MAMG improves upon
standard MTL models and analyze the convergence of
MAMG compared with existing MTL models.

4) We evaluate MAMG on many real-world datasets, which
include a variety of different-level pixel labeling tasks,
image classification tasks, and text classification tasks,
and the results show that our approach performs compet-
itively with a variety of state-of-the-art methods under
different combinations of tasks.

II. RELATED WORK

In this section, we briefly review the existing methods for
MTL in deep neural networks. Usually, based on the way of
parameter sharing, MTL can be categorized into hard parame-
ter sharing-based approaches and soft parameter sharing-based
approaches.

A. Hard Parameter Sharing-Based Approaches

Hard parameter sharing approaches are generally applied
by sharing the hidden layers among all tasks while setting
task-specific layers for each task [2], [26], [27], [28], [29],
[30], [31], [32]. In hard parameter sharing, all parameters are
divided into two parts: 1) task-shared parameters and 2) task-
specific parameters. The most common hard parameter sharing
approaches consist of a shared network layer that branches
out into task-specific networks [2], [27], [28]. UberNet [26]
jointly processed a large number of low-, mid-, and high-level
vision tasks by designing a hard parameter-sharing model,
which was achieved by designing different heads for differ-
ent tasks across different layers. Long et al. [33] utilized
novel tensor normal priors over parameter tensors of task-
specific layers to capture the task relatedness by designing
the hard parameter-sharing model. The above models do not
automatically determine when to branch out and usually need
manual efforts to adjust the branching point. To address this
issue, some recent works [22], [29], [30], [31], [32], [34]
have proposed efficient network architecture search strate-
gies that can automatically learn where to branch or share
within a hard parameter sharing multitask model. Similarly,
Bragman et al. [35] proposed a stochastic filter groups (SFGs)
mechanism to learn task-shared and task-specific representa-
tions, which was achieved by assigning convolution kernels
for task-shared and task-specific groups.
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B. Soft Parameter Sharing-Based Approaches

Soft-parameter sharing approaches have a common struc-
ture: each task has its own model with its own set of parame-
ters but different feature-/information-sharing mechanisms to
tackle the cross-task information sharing. A large number of
multitask models have been designed in the way of soft param-
eter sharing [16], [17], [36], [37], [38], [39], [40], [41]. For
example, Sun et al. [37] proposed a sparse sharing mechanism
to automatically find a sparse sharing structure by capturing
the relationships among tasks. Misra et al. [16] employed
a learnable linear combination to fuse the features shared
by all learning tasks. Therefore, the network can dynam-
ically determine the degree of the features shared among
tasks. Subsequently, various techniques have been proposed
to improve the feature fusion mechanism, such as Sluice
Networks [40], NDDR-CNN [17], and MTAN [39]. More con-
cretely, Sluice Networks [40] employed some skip connections
that can help the model select different sharing subspaces on
different network layers. NDDR-CNN [17] applied a dimen-
sionality reduction mechanism to fuse the shared feature,
which employed a 1 × 1 convolutional layer to process the
channel-wise features. Liu et al. [39] used a shared back-
bone network to extract a general pool of features, and then
designed task-specific attention modules for each task that can
be used to select features from the feature pool for each task.
Different from designing different strategies for feature shar-
ing, a few recent works have employed a knowledge-distilling
mechanism to fully use the features shared in the multitask
network. For example, Xu et al. [36] employed spatial atten-
tion to distill information from other task predictions and
then fused it into the target task. Zhang et al. [38] adaptively
diffused similar patterns recurring across different tasks by
propagating cross-task and task-specific patterns. Moreover,
Zhou et al. [41] proposed a pattern-structure diffusion frame-
work to capture and diffuse task-specific and task-across
pattern structures for boosting the performance of MTL.
However, all these approaches require considerable effort to
design more complex network structures and process complex
task interactions, especially when the number of tasks grows
rapidly.

Unlike the above two types of parameter-sharing methods
focusing on designing effective parameter-sharing strategies,
some approaches leverage other techniques to facilitate the
training of MTL. Some approaches focus on dynamically
adjusting the weights of tasks [25], [27], [39], [42]. For exam-
ple, several auxiliary-learning approaches have been proposed
to utilize the similarity between main and auxiliary tasks to
dynamically adjust the relationship between tasks [25], [42].
Liu et al. [39] encouraged all tasks to train at the same
speed by enabling the gradient magnitude of tasks to be sim-
ilar. Kendall et al. [27] utilized homoscedastic uncertainty to
measure the difference of different tasks and then used it to
dynamically adjust the weights of tasks. Some methods treat
the MTL problem as multiobjective optimization (MOO) and
apply the Pareto Optimization to solve the MTL problem [2],
[43], [44]. More recently, Yu et al. [15] proposed a gradi-
ent projection approach to project the conflicted task gradient

onto another gradient and then remove the conflicted gradient
component to alleviate task conflicts.

Current MTL models focus on designing effective feature-
sharing strategies to help share cross-task features. However,
they on the one hand need huge efforts to balance task-specific
losses during training to solve task conflicts, and on the other
hand lack a formal theoretical explanation to interpret why
they can solve the task conflicts. We thus propose a novel
gradient clipping algorithm to mitigate this issue.

III. OUR METHODOLOGY

In this section, we first present the formal problem defi-
nitions of MTL and gradient interference. Then, an efficient
gradient clipping rule is introduced in detail in the fol-
lowing section. Finally, we theoretically prove and analyze
the effectiveness and superiority of MAMG over existing
approaches.

A. Problem Formulation and Notation

Many MTL applications generally define a single-objective
optimization problem by simply averaging the task gradients
to optimize the multitask objective. This strategy cannot fun-
damentally address gradient interference among tasks, which
leads to significantly degraded performance. Analysis of the
causes of gradient interference problems has rarely been under-
taken in previous works, and thus this is the first work to
deeply explore the causes of gradient interference problems.

To better analyze the gradient interference problem in
MTL, we take two tasks as examples to illustrate the gra-
dient interference problem, as shown in Fig. 1. There are two
situations where the gradient interference problem can occur.

1) When the two tasks compete or conflict with each other,
the difference in gradient magnitudes of tasks may be
much larger. As shown in Fig. 1(a), task A and task B
compete with each other. More specifically, the gradient
of task A is much larger in magnitude than that of task
B, and ‖∇θ t′LA‖ � ‖∇θ t′LB‖, where ‖∇θ t′LA‖ denotes
the magnitude of the gradient of task A at parameter θ t′ .
Moreover, the angle between the two gradients is obtuse
on the 2-D space. Therefore, task A will dominate the
overall gradient of the multitask model, which can cause
networks to focus on the training of task A by back-
propagating a larger gradient. Task B will eventually be
overwhelmed by task A when iterating continuously. The
performance of the model will be significantly degraded.

2) When the two tasks compete or conflict with each other,
the angle between two task gradients may be obtuse on
the 2-D space, and the difference in gradient magni-
tudes will be generally smaller. As shown in Fig. 1(b),
the difference in the gradient magnitudes of tasks A
and B is small, ‖∇θ t′LA‖ ≈ ‖∇θ t′LB‖, so the gradient
interference problem does not exist in the gradient mag-
nitude. However, the angle between gradients is obtuse
on the 2-D space, and we assume that the gradients of
these two tasks may cancel each other out in certain
directions. Thus, these tasks will be far from being fully
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(a) (b) (c) (d)

Fig. 2. Clipping the interfering gradients on a 2-D MTL system. (a) Tasks i and j have conflicting gradients. (b) We define a gradient interfering direction
Pγ and calculate the interfering components of tasks i and j, denoted as �gi and �gj, respectively. (c) We clip the interfering gradient �gi,j and obtain the
modified gradient of task i, called g′

i. (d) We mitigate the gradient interference problem in the MTL system and obtain the modified gradient gMG without
interference.

trained, and then the model will converge to a position
far from the optimal point shown in Fig. 1(b).

Since the magnitudes of gradients are highly dependent on
the network structure, we assume that the cause of gradient
interference is the angle between the task gradients. A more
complex neural-network structure can produce greater conflicts
in gradient magnitudes. In this article, we focus on mitigat-
ing the gradient interference problem on the angle between
task gradients. Let the gradient of task i be gi = ∇Li(θ). We
formally define situation (2) as follows.

Definition 1: Given a mini-batch of training samples from
tasks i and j, where ∇θLi and ∇θLj denote gradients from
samples of tasks i and j, respectively, over the network param-
eters θ , we define αi,j as a condition of gradient interference
in the gradient direction. Formally

αi,j = sign
(〈∇θLi,∇θLj〉) (1)

where αi,j = −1 denotes that tasks i and j conflict with each
other, and 0 otherwise. Essentially, the interfering gradients
hinder the learning of parameter θ and degrade the impact
of individual tasks on the overall model. As a consequence,
the gradient interference leads to a low-quality local optimum
w.r.t. θ .

We observe the presence of the gradient interference, shown
in Fig. 1. A two-task example is used to analyze the condi-
tions when gradient interference happens. Motivated by this
analysis, we propose a novel approach to mitigate the gradi-
ent interference problem by designing a gradient clipping rule
to directly modify the gradient of conflicting tasks.

B. Proposed Method

Our goal is to reduce the negative impact of the gradient
interference problem by directly clipping the gradients. In this
section, we design a gradient clipping rule to mitigate the gra-
dient interference problem. The core details of the rule are
presented through a two-task example, shown in Fig. 2. We
also theoretically prove the superiority and effectiveness of
directly clipping interfering gradients in the next section.

The gradient interference problem often happens when gra-
dients from different tasks have components in conflicting
directions, as shown in Definition 1. Intuitively, we directly
modify the conflicting gradients by designing the gradient clip-
ping rule, which does not affect the network structure. In other
words, it is a model-agnostic approach and does not depend
on specific models.

We hypothesize that components of the gradient for differ-
ent tasks may interfere with each other in a certain plane or
direction. Therefore, to address this problem, we should find
that direction and modify the interfering gradients. For a two-
task MTL model, the gradient can be computed as g = gi +gj,
where gi and gj are the gradients of tasks i and j, respectively.
Ideally, the gradient components of gi and gj on the tangent
plane of gradient g should cancel each other out, and these
components do not help the model converge to the optimum.
As the global optimal gradient is hard to obtain, we cannot
obtain the global optimal gradient or calculate the optimal tan-
gent direction of the optimal gradient. Alternatively, we find
a direction that is not the optimal interfering direction but is
close to the tangent direction of g, which is formally defined
below.

Definition 2 (Gradient Interfering Direction): Given two
task gradients, gi and gj, if the tangent direction of the gra-
dient of g exists, where the gradient components of gi and gj
may cancel each other out, then we call this direction the gra-
dient interfering direction. We define the gradient interfering
direction between two gradients gi and gj as Pγ = gi − gj.

As shown in Fig. 2(a), when the gradient interference
problem happens (it meets the condition of Definition 1),
we compute the gradient components of each task on the
interfering direction Pγ . We define the angle between gra-
dients of each task and interfering direction as φ. Formally

cosφi = gi · Pγ

‖gi‖2‖Pγ ‖2
, cosφj = gj · Pγ

‖gj‖2‖Pγ ‖2
(2)

where φi and φj denote the angle between the gradients of
tasks i and j and interfering direction Pγ , defined as φi =
〈gi,Pγ 〉, φj = 〈gj,Pγ 〉. Then, as shown in Fig. 2(b), we can
calculate the gradient difference on the Pγ by

�gi,j = ‖gi · cosφi − gj · cosφj‖ (3)

where gi · cosφi denotes the interfering gradient component
of task i on interfering direction Pγ , and �gi,j is the gradi-
ent difference of tasks i and j on direction Pγ . We use �gi,j
to quantitatively describe the degree of gradient interference.
Intuitively, we modify the gradient of tasks that meets the
condition of Definition 1 by making full use of the gradient
difference �gi,j on the interfering direction.

The core of alleviating the interfering gradient is to break
the condition under which the gradient interference problem
occurs. An intuitive way to achieve this is to reduce the
angle between different task gradients to meet αi,j �= −1,
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Algorithm 1 Gradient Clipping Rule

Input: Loss Li of task Ti, Network parameters θ , Task set
T = {Ti}t

i=1.
Output: Modified gradient gMG of the multi-task model.

1: for Ti ∈ T do
2: gi = ∇Li(θ)

3: for Tj samplefrom{T \ Ti} do
4: gj = ∇Li(θ)

5: if gi · gj < 0 then
6: calculate gradient interfering direction

Pγ = gi − gj.
7: compute angle cosφi and cosφj by using eq. (2).
8: calculate the interfering gradient �gi,j by using

Eq. (3).
9: obtain the clipped gradient g′

i = gi −�gi,j · Pγ
‖Pγ ‖ .

10: end if
11: end for
12: end for
13: return modified gradient gMG = 1

t

∑t
i g′

i

which breaks the condition defined in Definition 1 (defined
as αi,j = −1). Therefore, we use the difference between the
gradient gi and the interfering gradient difference �gi,j to
update the original gradient of task i. As shown in Fig. 2(c),
g′

i is the modified gradient of task i. When we use g′
i to sub-

stitute gi, the angle between the gradients of task i and j
becomes smaller (from ψ to β). This breaks the condition
of the gradient interference problem. We mitigate the gradient
interference problem to a certain extent. Formally, we calculate
the modified g′

i by

g′
i = gi −�gi,j · Pγ

‖Pγ ‖ (4)

where Pγ is the interfering direction described in Definition 2,
�gi,j denotes the magnitude of difference of interfering gradi-
ents of different tasks, and (Pγ /‖Pγ ‖) denotes the direction of
�gi,j. Equation (4) is the operation between vectors. Finally,
as shown in Fig. 2(d), we can obtain the gradient of the MTL
model gMG after mitigating the gradient interference. This is
equivalent to removing the interfering component of the gra-
dient for the task, thereby degrading the degree of destructive
gradient interference between tasks. Our MAMG repeats the
gradient clipping process across all of the other tasks ran-
domly sampled from the current batch {Tj}t

j=1\Ti, resulting in
the gradient g′

i that is applied for task Ti. We also perform the
same procedure for all tasks in the current batch to obtain the
modified gradient. The detailed process of clipping interfering
gradients is given in Algorithm 1.

C. Theoretical Analysis

In this section, we theoretically analyze the effectiveness
and superiority of MAMG under a two-task learning scenario.
We first give some definitions of concepts for simplicity.

Definition 3: Consider two task-loss functions
L1 : Rn → R and L2 : R

n → R. We define the two-
task learning objective as L(θ) = L1(θ) + L2(θ) for all
θ ∈ R

n, where g1 = ∇L1(θ), g2 = ∇L2(θ), and g = g1 + g2.
First, we analyze the effectiveness of the MAMG gradient

clipping rule by proving the convergence of MAMG under the
L-Lipschitz assumptions in Theorem 1.

Theorem 1: If all the objective functions, L1 and L2, are
differentiable and convex, then assuming the gradient of L
is L-Lipschitz continuous with L > 0, the proposed MAMG
gradient clipping rule with step size t < (1/L) will converge
to the optimal value L(θ∗).

Proof: Following the above definitions, let g1 and g2 denote
the gradient of tasks 1 and 2, Pγ be the interfering direc-
tion, and the condition of gradient interference be α1,2 =
sign(〈g1, g2〉) = −1. We define the angle between g1 and
g2 as ψ . Therefore, when gradient interference happens, the
angle between g1 and g2 meets cosψ ≥ 0. At each iteration of
model training, there are two cases: the gradient interference
problem exists or does not exist.

Case 1: If the gradient interference problem does not hap-
pen, according to Definition 1, we know that cosψ ≥ 0. We
can use standard gradient descent algorithms (e.g., SGD and
Adam) with step size t ≤ (1/L) to iteratively solve the solution
until ∇L(θ) = 0.

Case 2: If the gradient interference problem happens,
namely, cosψ < 0, we present the detailed process as follows.

According to the assumption that ∇L(θ) is Lipschitz con-
tinuous [45] with constant L, we extend L to quadratic at θ ,
and then we obtain the following inequality:

L
(
θ+) ≤ L(θ)+ ∇L(θ)T

(
θ+ − θ

) + 1

2
∇2L(θ)

∥∥θ+ − θ
∥∥2

≤ L(θ)+ ∇L(θ)T
(
θ+ − θ

) + 1

2
L
∥∥θ+ − θ

∥∥2
. (5)

Now, we can use the MAMG gradient clipping rule to
update the θ+. According to Definition 3, (3), and (4), we
can update θ+ by θ+ = θ − t · g = θ − t · (g1 − �g1,2 ·
(Pγ /‖Pγ ‖)+ g2)

L
(
θ+) ≤ L(θ)− t · gT

(

g + g2
2 − g2

1

‖Pγ ‖2
· (

g2 − g1
)
)

+ 1

2
· L · t2

∥
∥∥∥∥

g + g2
2 − g2

1

‖Pγ ‖2
· (

g2 − g1
)
∥
∥∥∥∥

2

. (6)

Then, using the identity g = g1 + g2, we can obtain

L(
θ+) ≤ L(θ)− t

(
(
g1 + g2

)2 + g2
2 − g2

1

‖Pγ ‖2
·
(

g2
2 − g2

1

))

+ 1

2
Lt2

∥∥∥∥
∥
(
g1 + g2

)2 + 2
g2

2 − g2
1

‖Pγ ‖2

(
g2

2 − g2
1

)
+

(
g2

2 − g2
1

)2

‖Pγ ‖2

∥∥∥∥
∥
.

(7)

Expanding further and simplifying the formula, we can
obtain the final inequality:

L
(
θ+) ≤ L(θ)+ 2 ·

(
Lt2 − t

)
‖g1 + g2‖2

≤ L(θ)+ 2 ·
(

Lt2 − t
)
‖g‖2. (8)
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Using t ≤ (1/L), we can obtain that Lt2 − t = t(Lt − 1) ≤
t(L · (1/L) − 1) = t · 0 = 0, and thus 2(Lt2 − t)‖g‖2 ≤ 0.
Finally, we obtain the following inequality:

L
(
θ+) ≤ L(θ). (9)

This inequality proves that the value of L will decrease
during every iteration when using the proposed MAMG gra-
dient clipping rule. Therefore, MAMG is effective and can
guarantee that the objective function value is monotonically
decreasing.

Lemma 1: For the two task examples shown in Fig. 2(d),
let gMG = g′

i + gj be the modified gradient of the MTL model
by the MAMG gradient clipping rule, and g = gi + gj be the
original gradient without modification

‖g‖ ≥
∥
∥∥gMG

∥
∥∥. (10)

Theorem 2: Given the gradient gMG updated by using the
MAMG rule, if all the objective functions L1,L2, . . . ,Ln

are differentiable and ∇Ln(θ) is Lipschitz continuous with
constant L > 0, then for the angle between gradient g and
modified gradient cos(g, gMG) ≥ (1/2), there exists a step
size t ≤ (1/L), such that

L
(
θ+) ≤ L(θ)− R (11)

where R ≥ 0 is a positive variable w.r.t step size t. Theorem 2
shows that applying the MAMG process can reach the optimal
value L(θ) = L(θ∗).

Proof: According to our assumption that ∇L(θ) is Lipschitz
continuous with constant L > 0, we can perform a quadratic
expansion of L around θ , which is defined as follows:

L
(
θ+) ≤ L(θ)+ ∇L(θ)T

(
θ+ − θ

) + 1

2
∇2L(θ)

∥∥θ+ − θ
∥∥2

(Using the definition of Lipschitz-continuous)

≤ L(θ)+ ∇L(θ)T
(
θ+ − θ

) + 1

2
L
∥∥θ+ − θ

∥∥2
. (12)

Now, we can use the MAMG gradient clipping rule to
update θ+ by letting θ+ = θ − t · gMG and gMG = g′

1 + g2.
Then, we can obtain the simplified formula

L
(
θ+) ≤ L(θ)− t · gT · gMG + 1

2
Lt2

∥
∥∥gMG

∥
∥∥

2

(
Using the assumption cos

(
g, gMG

)
≥ 1

2

)

≤ L(θ)− 1

2
t · ‖g‖ ·

∥∥∥gMG
∥∥∥ + 1

2
Lt2

∥∥∥gMG
∥∥∥

2

(
Using the Lemma 1 ‖g‖ ≥

∥∥∥gMG
∥∥∥
)

≤ L(θ)− 1

2
t · ‖g‖ ·

∥∥∥gMG
∥∥∥ + 1

2
Lt2

∥∥∥gMG
∥∥∥ · ‖g‖. (13)

After rearranging terms, we obtain the final inequality

L
(
θ+) ≤ L(θ)− 1

2
·
(

t − L · t2
)

· ‖g‖ ·
∥
∥∥gMG

∥
∥∥. (14)

Note that (1/2) · (t − L · t2) · ‖g‖ · ‖gMG‖ ≥ 0 when t ≤ (1/L).
Thus, the application of the MAMG gradient clipping rule can
guarantee a strict decrease in the value of objective functions
L(θ+) ≤ L(θ) − R after a large number of iterations. When

(1/2)t · ‖g‖ · ‖gMG‖ + (1/2)Lt2‖gMG‖ · ‖g‖ = 0 if and only if
‖g‖ = 0 or ‖gMG‖ = 0.

Theorems 1 and 2 prove that the application of MAMG
guarantees a decrease in the value of objective functions, and
it can help the model converge to the minimizer of L. When
the gradient interference problem happens, we can repeatedly
apply the MAMG gradient clipping rule to update the model
parameters θ , and the objective function value will strictly
decrease until it reaches the optimal value L(θ) = L(θ∗).

For further analysis on superiority, we theoretically prove
that MAMG improves upon the newest gradient method
PCGrad [15] and standard MTL methods. First, according
to [15], we define the multitask curvature as H(L; θ , θ ′) =∫ 1

0 ∇L(θ)T∇2L(θ + τ(θ ′ − θ))∇L(θ)dτ , which is the average
curvature of L between θ and θ ′ in the direction of ∇L(θ).
The details are presented in the following theorem.

Theorem 3: Assume L(θ) is differentiable, the gradient
L(θ) is Lipschitz continuous with constant L > 0, and multi-
task curvature H(L; θ , θ ′) ≥ L‖g‖2. Let θMT and θMG be the
parameters after updating θ by g and gMG modified by the
MAMG gradient clipping rule, respectively. Both of them use
step size t ≤ (1/L). Then

L
(
θMG

)
≤ L

(
θPG

)
. (15)

To prove Theorem 3, according to [15], let θPG = θ −t ·gPG =
θ − t · (g − [(g1 · g2)/(‖g1‖2)]g1 − ([g1 · g2]/[‖g2‖2])g2), and
θMG = θ − t · gMG.

Proof: We first use the definition of the Lipschitz-continuous
gradient [45] to obtain the following result:

L
(
θPG

)
= L(θ)+

∫ 1

0

〈
∇L

(
θ + τ

(
θPG − θ

))
, θPG − θ

〉
dτ

= L(θ)+
〈
∇L(θ), θPG − θ

〉

+
∫ 1

0

〈
∇L

(
θ + τ

(
θPG − θ

))
− ∇L(θ), θPG − θ

〉
dτ

(
Expanding, using the identity −tgPG = θPG − θ

)

= L(θ)− tgT · gPG

+ t2
∫ 1

0
∇L(θ)T · ∇2L

(
θ + τ

(
θPG − θ

))
∇L(θ)dτ.

(16)

According to the assumption H(L; θ , θ ′) ≥ L‖g‖2, we can
obtain the following result:

L
(
θPG

)
≥ L(θ)− tgT · gPG + L · t2 · ‖gPG‖2

= L(θ)+ 2
(

2Lt2 − t
)

· ‖g‖2. (17)

According to Theorem 1 and (8), we can obtain the
simplified upper bound of L(θMG)

L
(
θMG

)
≤ L(θ)+ 2 ·

(
Lt2 − t

)
‖g‖2. (18)
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According to (17) and (18), we have the following
inequality:

L
(
θMG

)
− L

(
θPG

)
≤ L(θ)+ 2 ·

(
Lt2 − t

)
· ‖g‖2

− L(θ)− 2
(

2Lt2 − t
)

· ‖g‖2

=
(
−2t2

)
· ‖g‖2 ≤ 0. (19)

Therefore, we prove Theorem 3, which further shows the
superiority of MAMG compared to PCGrad. As it is proved
that PCGrad is superior to standard MTL methods, we can
draw the conclusion that MAMG is superior to existing
methods, which can be formally described by L(θMG) ≤
L(θPG) ≤ L(θMT).

IV. EXPERIMENTAL SETUP

A. Datasets and Tasks

To evaluate the effectiveness of MAMG, extensive experi-
ments are conducted on three real-world datasets. The details
of these three datasets as follows.

CityScapes: The CityScapes dataset [46] focuses on seman-
tic understanding of urban street scenes and consists of
high-resolution street-view images. We select two tasks from
this dataset: 1) the Semantic Segmentation task and 2) the
Depth Prediction task, described in [39]. Similar to [22],
CityScapes is divided into training, validation, and testing data,
2975/125/500.

NYUv2: The NYUv2 dataset [47] consists of 1449 RGB-D
images and 464 diverse indoor scenes with detailed anno-
tations. We construct two training scenarios by using this
dataset: 1) following [16], [17], we construct a two-task learn-
ing scenario by using the Semantic Segmentation and Surface
Normal Estimation task and 2) according to [39], we consider
the Depth Prediction, Semantic Segmentation, and Surface
Normal Estimation task jointly. We adopt 40-class annotation
for Semantic Segmentation and follow the common train/val
splits: 795 images for training and 654 images for validation.

Taskonomy: Taskonomy [48] is a large-scale dataset that
contains over 4.5 million indoor images from over 5000 build-
ings, with annotations available for 26 tasks. Similar to [22],
we use the tiny version of Taskonomy, consisting of 38 1840
indoor images from 35 buildings, with annotations available
for 26 tasks. Following [49], we construct a five-task learning
scenario by selecting the Surface Normal Estimation, Edge
Detection, Keypoint Detection, Semantic Segmentation, and
Depth Prediction task from 26 tasks. We use the standard
tiny split benchmark, which contains 274 883 training samples,
52 443 validation samples, and 54 514 testing images.

MultiMNIST: MultiMNIST dataset is an MTL version of the
MNIST dataset [50], formed by overlaying multiple images
together. We randomly select two images with different digits
from the MNIST dataset, and then combine these two images
to form a new image by putting one digit on the top-left cor-
ner and the other one on the bottom-right corner [2], [15].
Therefore, for each image of MultiMNIST dataset, we have
two classification tasks: 1) classifying the digit on the top-
left (task 1) and 2) classifying the digit on the bottom-right

(task 2). We construct 60K images and 10K images for training
and testing, respectively.

Multitask CelebA: CelebA includes 200K face images anno-
tated with 40 attributes [51]. We view each attribute as a binary
classification task and thus we convert it to a 40-way MTL
problem following [15].

Multitask CIFAR-100: CIFAR-100 [52] includes 100 classes
with 600 images each. Following [15], we treat 20 coarse
labels in the original CIFAR-100 dataset as 20 tasks to con-
struct Multitask CIFAR-100 dataset. Every task in Multitask
CIFAR-100 dataset is a 5-way classification problem, with
2500 training images and 500 test images per task.

B. Evaluation Metrics

For different tasks, the evaluation metrics are different. We
use the mean intersection over union (mIoU) and pixel accu-
racy (Pix Acc) to evaluate the Semantic Segmentation task.
For the Surface Normal Estimation task, we use the mean
and median angle distances of all the pixels for evaluation
(the lower, the better). Moreover, we use the percentage of
pixels that are within the angles of 11◦, 22.5◦, and 30◦ to
the ground truth to evaluate the performance (the higher, the
better) [53]. The performance of the Depth Prediction task
is evaluated by absolute and relative errors (the lower, the
better), and we evaluate the relative difference [54] between
the prediction and ground truth by the percentage of δ =
max{(ypred/ygt), (ygt/ypred)} within the threshold 1.25, 1.252,
and 1.253 (the higher, the better). For the Taskonomy dataset,
we compute the task-specific loss on test images as the eval-
uation metrics to measure the performance of each task [22].
Apart from reporting the absolute task performance with the
above-mentioned metrics, we also compute the relative task
performance �Ti with respect to the single-task baseline STL
to evaluate the overall performance of each task Ti [22], [39].
The overall performance of each task can be evaluated as
follows:

�Ti = 1

m

m∑

j=0

(−1)lj
(
MTi,j − MSTL,j

)
/MSTL,j ∗ 100% (20)

where lj = 1 if a lower value is better for the metric Mj and
0 otherwise; m is the number of the metrics; and MTi,j and
MSTL,j denote performance of task Ti and single-task baseline
under the jth metric, respectively. To better evaluate the overall
performance of compared baselines, we obtain the multitask
performance by computing the average relative performance
overall tasks by

�MTL = 1

T

T∑

i=1

�Ti (21)

where T is the number of tasks and �MTL denotes the overall
performance of the MTL model across all tasks.

C. Implementation Details

Following [22], [34], we use ResNet-34 [55] as our back-
bone and the ASPP decoder [56] as task-specific heads. For all
datasets, the weight parameters are initialized by the Kaiming
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TABLE I
EXPERIMENTAL RESULTS OF SEMANTIC SEGMENTATION AND DEPTH PREDICTION TASKS IN CITYSCAPES

normal distribution N (0, std2) [57], and the bias terms are ini-
tialized to zero. We use the Adam [58] approach to optimize
the proposed MAMG. For the CityScapes and Taskonomy
datasets, we set the learning rate of task-specific parameters
and backbone parameters to 1e-3 and 1e-2, respectively. For
the NYUv2 dataset, we set the learning rate to 1e-2. The
batch size is set as 16. We also use L2 regularization (weight
decay = 0.0001) to alleviate the overfitting problem. Similar
to [22], [34], and [49], we use L1 loss for the Edge Detection,
Keypoint Detection, and Depth Prediction tasks; Cross-entropy
loss for the Semantic Segmentation task; and cosine similar-
ity loss for the Surface Normal Estimation task. Note that all
comparison methods use the same hyperparameter settings.

D. Compared Methods

To better illustrate the effectiveness of our method, we com-
pare MAMG with some state-of-the-art baseline methods that
design specific strategies to alleviate the gradient interference
problem.

Single-Task Baseline: We use the same backbone and task-
specific head to train each task separately, where each task
has its own set of parameters. Following [22], we use the
single-task performance as baseline to calculate the relative
performance of each multitask model mentioned below.

Multitask Baseline: We also set a common multitask base-
line (hard-parameters sharing structure), where all tasks share
the backbone network but end up with separate task-specific
head networks.

Cross-stitch networks [16] proposes a task-feature sharing
mechanism by sharing the activations among all tasks. It
mainly learns a linear combination of activations among all
tasks to fuse shared information.

NDDR-CNN employs a dimensionality reduction mecha-
nism to fuse activations among all tasks, which first concate-
nates the features with the same spatial resolution, and then
applies a 1×1 convolution layer to reduce the number of chan-
nels and share the useful information by fusing the activations
among all channels [17].

AdaShare employs the neural architecture search strategy to
decide what to share across which tasks to achieve the best
performance. This model focuses on learning a task-specific

policy that can decide to share which layers for a given task
during jointly training multitasks [22].

PCGrad develops a simple yet general gradient optimization
strategy to alleviate the gradient conflicting problem, which
projects a task’s gradient onto the normal plane of the gradient
of any other task [15]. It is similar to our proposed method,
and thus we directly compare it under various settings.

AuxiLearn employs the multitask optimization strategy to
learn nonlinear interactions among all tasks by applying
implicit differentiation [25]. It can flexibly combine multiple
task loss terms into a single coherent object function.

For a fair comparison, we utilize the same backbone
network and task-specific head network with MAMG to
implement Cross-Stitch Networks, NDDR-CNN, AdaShare,
PCGrad, and AuxiLearn. Therefore, we plug the MAMG into
Multitask baselines and then compare it with these models to
illustrate the performance of MAMG. Because MTAN has a
more complex network structure, we can not directly compare
it. To further present the superiority of MAMG, we extend
these models by plugging MAMG into some existing models
and report the comparison results.

V. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of MAMG on
different datasets, together with different numbers of tasks, to
further illustrate the superiority of the proposed model under
various scenarios. We conduct extensive experiments with
the aim of answering the following questions: 1) Is MAMG
competitive with other state-of-the-art methods on real-world
datasets? 2) Is MAMG compatible with a wide range of tasks?
3) Can MAMG improve the performance of all learning tasks
rather than only some of them? and 4) Is MAMG a general
and model-agnostic approach?

A. Quantitative Results

Table I shows the performance of Semantic Segmentation
and Depth Prediction tasks on the Cityscapes dataset under
ten metrics. It is clear that MAMG outperforms all com-
pared methods in 9 out of 10 metrics and obtains a 5%
improvement over the state-of-the-art mothods. More specifi-
cally, some methods, such as Cross-Stitch, NDDR-CNN, and
AuxiLearn, perform well in the Semantic Segmentation task,
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TABLE II
PERFORMANCE OF COMPARISON METHODS IN NYUV2 DATASET WITH TWO LEARNING TASKS:

SEMANTIC SEGMENTATION AND SURFACE NORMAL ESTIMATION

TABLE III
PERFORMANCE OF COMPARISON METHODS IN NYUV2 DATASET WITH THREE LEARNING TASKS:

SEMANTIC SEGMENTATION, SURFACE NORMAL ESTIMATION, AND DEPTH PREDICTION

but obtain poor performance in the Depth Prediction task.
The huge gap in performance between tasks comes from task
conflicts, and these methods cannot deal with conflicts well.
PCGrad and AdaShare use specific strategies to mitigate gra-
dient interference and thereby obtain higher performance, but
the results are not satisfactory.

Table II shows the performance of the Semantic
Segmentation and Surface Normal Estimation tasks on
the NYUv2 dataset under ten metrics. Our proposed MAMG
achieves the best performance in 8 out of 10 metrics.
Compared with seven existing models, MAMG has about
4.6% improvements compared with the second best method
in overall model performance �MTL. Moreover, MAMG has
a balanced performance in all learning tasks, which shows the
effectiveness of the proposed approach to mitigate gradient
interference.

B. Effect of Multiple Task Sets

Our proposed MAMG is not only effective in the two-task
learning scenario but is also applicable to multiple task sets,
such as three-task learning and five-task learning scenarios. To
show the effectiveness of MAMG in multiple tasks, we jointly
train different task sets that include a different number of tasks
from identical or different datasets.

We first construct a three-task learning scenario from the
NYUv2 dataset by jointly training the Semantic Segmentation,
Surface Normal Estimation, and Depth Prediction tasks.

The results are shown in Table III, MAMG achieves the
best performance in 13 out of 16 metrics. For each task,
MAMG obtains the best overall performance. More con-
cretely, methods, such as Cross-Stitch, NDDR-CNN, and
AuxiLearn perform well in the Surface Normal task but
obtain poor performance in the Semantic Segmentation and
Depth Prediction tasks, especially in the Depth Prediction
task. The huge gap in performance between tasks comes from
the increase in task conflicts (an increase in the number of
tasks brings more task conflicts). Therefore, these methods
cannot deal with conflicts well when the number of tasks
increases. PCGrad and AdaShare use specific strategies to
improve the overall performance of the MTL model, but
only obtain the second-best result. Therefore, the experimental
results for the three-task learning scenario show that MAMG is
superior in multiple learning task sets compared with existing
methods.

Furthermore, we construct a five-task learning scenario
by selecting five tasks from a larger real-world dataset,
Taskonomy, with the aim of presenting the effectiveness
of MAMG in the five-task learning scenario. We select
the Surface Normal Estimation, Edge Detection, Keypoint
Detection, Semantic Segmentation, and Depth Prediction tasks
to construct a five-task learning experiment. We use the
task-specific loss as the evaluation metrics to evaluate the
performance of each task, such as cosine similarity for the
Surface Normal task and errors for the Semantic Segmentation,
Edge Detection, Keypoint Detection, and Depth Prediction
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(a) (b) (c)

Fig. 3. Classification accuracy of different methods on three multitask datasets. We show classification accuracy (ACC.) on two tasks for MultiMNIST
dataset. For CelebA and CIFAR-100 datasets, we report the average classification accuracy (Avg ACC.) of 40 tasks and 20 tasks, respectively. (a) MultiMNIST.
(b) CelebA dataset. (c) CIFAR-100 dataset.

TABLE IV
EXPERIMENTAL RESULTS ON THE TASKONOMY DATASET

tasks. As shown in Table IV, MAMG achieves the best
performance in 4 out of 6 metrics and obtains the best overall
performance among the six comparison methods. According to
the results reported in Tables II–IV, MAMG clearly obtains a
better performance under different task sets compared with
existing state-of-the-art methods. Moreover, MAMG has a
more balanced performance across all training tasks, and it
improves the performance in all tasks. Therefore, MAMG does
not depend on manually selecting the learning task sets, and
it is compatible with a wide range of tasks.

C. Multilabel Classification Results

In order to evaluate the performance of MAMG on
Multilabel classification problems, we first conduct experi-
ments on MultiMNIST [2], CelebA [2], and CIFAR-100 [15]
datasets. We compare our MAMG with the vanilla
MTL method, multiobjective optimization (MOO [2]), and
PCGrad [15] to illustrate the effectiveness of MAMG. For
the MultiMNIST experiments, we follow the same set-up of
PCGrad [15] by using the LeNet network [59] as a task-shared
network and using the fully connected layers as task-specific
networks for each task. For the CelebA experiments, we fol-
low [2] to use the ResNet-18 network [55] without the final
layer as a task-shared network and employ 40 separate fully
connected layers as task-specific networks for 40 tasks. In the
CIFAR-100 experiments, we use the VGG-16 network [60] as
the task-shared network and employ a fully connected layer
for each task. For the fair comparison, all comparison methods
use the same experimental setting.

In Fig. 3(a), we show the classification accuracy of
two tasks. We can observe that MAMG obtains the

best performance on two tasks, which illustrates that our
proposed MAMG can mitigate task conflicts and improve the
performance of all tasks. As shown in Fig. 3(b), MAMG out-
performs comparative methods across 40 binary classification
tasks, which shows that MAMG is effective in multilabel clas-
sification problems and can improve the overall performance
of the MTL model. Moreover, when the number of joint train-
ing tasks in the MTL CelebA dataset is high, our MAMG can
also improve the performance of all tasks. Fig. 3(c) shows
the average classification accuracy of 20 5-way classification
tasks in the MTL CIFAR-100 dataset. It is clear that MAMG
achieves the best performance on overall evaluation when the
number of tasks is high and the tasks are more complex. This
demonstrates the effectiveness of our proposed MAMG and
can also mitigate the task conflicts in multilabel classification
problems.

VI. ANALYSIS

A. Empirical Analysis on Convergence

In the theoretical analysis part of Section III, we theo-
retically prove the superiority of our proposed method over
existing MTL methods. Furthermore, we conduct extensive
experiments about the convergence to better demonstrate the
advantages of MAMG. Fig. 4(a) shows the training loss curves
of the Semantic Segmentation task. It is clear that MAMG
is constantly decreasing as the number of iterations increases.
Fig. 4(b) shows the training loss curves of the Surface Normal
Estimation task. We can find that MAMG is convergent,
and loss value is constantly decreasing. Fig. 4(c) shows the
training loss curves of the Depth Prediction task. We can
find that MAMG has a similar convergent curve as the
state-of-the-art methods, such as Cross-Stitch, NDDR-CNN,
and AdaShare, which indicates that MAMG can guarantee
the convergence of the objective. Fig. 4(d) shows the total
training loss curves of these three learning tasks. MAMG
is clearly superior to the existing methods because it can
decrease faster than other comparison methods and obtains
a lower objective value. Therefore, compared with other base-
lines, MAMG has a lower loss value in the three learning
tasks, which shows that it can help multitask models con-
verge to the minimizer of objective functions and obtain better
performance.
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(a) (b) (c) (d)

Fig. 4. Learning curve of comparison methods about three learning tasks in the NYUv2 dataset. (a) Learning curve on Semantic Segmentation task.
(b) Learning curve on the Surface Normal Estimation task. (c) Learning curve on the Depth Prediction task. (d) Total losses of the three learning tasks.

TABLE V
EXPERIMENTAL RESULTS ON THE NYUV2 DATASET WITH THREE LEARNING TASKS COMPARED

WITH THE PCGRAD METHOD UNDER DIFFERENT STATE-OF-THE-ART METHODS

B. Analysis of Model Independence

In order to better answer the question of whether MAMG is
or is not a general and model-agnostic approach, we combine
MAMG with several state-of-the-art MTL methods, namely,
Cross-Stitch [16], MTAN [39], and AdaShare [22], and then
evaluate the performance on the three challenging learning
tasks in the challenging indoor scene dataset. The comparison
results are reported in Table V. Applying MAMG can obtain
better performance among all three tasks. More specifically,
AdaShare with MAMG achieves the best performance in 9
out of 12 metrics across the Semantic Segmentation, Surface
Normal Estimation, and Depth Prediction tasks. MTAN with
MAMG achieves the best performance in 10 out of 12 metrics
and is the second best in two metrics across three learn-
ing tasks. Therefore, MAMG is model-agnostic and can be
plugged into most MTL networks to induce huge improve-
ments in performance.

Furthermore, we conduct the experiments to analyze the
convergence of these state-of-the-art methods with MAMG,
such as MTAN and AdaShare, by plotting learning curves in
Fig. 5 with respect to the gradient steps in the NYUv2 dataset.
We can see that MAMG can indeed help MTL architectures
converge faster and achieve a lower loss value compared
with PCGrad methods [15]. In general, these results sug-
gest that MAMG makes an improvement in performance and
optimization speed. The improvement is caused by MAMG
because it mitigates the gradient interference problem.

C. Ablation Studies on Extension to Other Architectures

To present that MAMG is model agnostic, we imple-
ment other network architectures, such as Wide ResNets

TABLE VI
DIFFERENT NETWORK ARCHITECTURES ON NYUV2 DATASET

TABLE VII
EXPERIMENTAL RESULTS ON EXTENSION TO TEXT DATASET

(WRN) [61], and MobileNet-v2 [62], on the NYUv2 dataset.
As shown in Table VI, MAMG outperforms the MTL baseline
by 5.4% and 7.5% using MobileNet-v2 and WRN, respec-
tively. This indicates the effectiveness of MAMG across
different network architectures.

D. Ablation Studies on the Extension to Text Dataset

To further illustrate the effectiveness of MAMG, we extend
MAMG to the text dataset, SemEval [63], which includes
the stance detection task and the sentiment analysis task.
Moreover, we implement MAMG using Bert and GCN [64].
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(a)

(b)

Fig. 5. Learning curves combining MAMG with two state-of-the-art networks. (a) MTAN network. (b) AdaShare network.

Fig. 6. Qualitative Visualization of AdaShare, Cross-Stitch, NDDR-CNN, PCGrad, and MAMG Performance in NYUv2 dataset. The red boxes are regions
of interest, showing the effectiveness of the results provided from our method and other comparison methods. Our MAMG gives more accurate prediction
and clearer contour in Semantic Segmentation (Seg), Surface Normal Prediction (Surface), and Depth Prediction (Depth). Best viewed in color.

As shown in Table VII, MAMG outperforms the MTL base-
line overall metrics, which indicates that MAMG is practical
in text datasets.

E. Qualitative Visualization

We visualize the results of Cross-Stitch, NDDR-CNN,
AdaShare, PCGrad, and MAMG in a three-task learning sce-
nario in NYUv2 dataset. As shown in Fig. 6, we can observe
that MAMG can obtain the better predict results in Semantic
Segmentation (Seg), Surface Normal Prediction (Surface), and

Depth Prediction (Depth) tasks, where the edges of objects are
clearly more pronounced. This implies the effectiveness of our
proposed MAMG.

VII. CONCLUSION

In this article, we analyzed the gradient interference problem
and provided formal definitions of the gradient interference.
To alleviate these gradient interference issues, we proposed
a novel approach (MAMG) that directly modifies the gradi-
ent of task. MAMG defines a gradient-interfering direction
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where different tasks may conflict with each other. According
to the gradient component on conflict direction, we utilized
the proposed gradient clipping rule to directly modify the
task gradient to break the conditions of gradient interference.
Moreover, we presented a series of theoretical proofs to illus-
trate the effectiveness of MAMG. Extensive experiments on
six real-world datasets demonstrated the effectiveness of our
approach in a wide range of task sets.
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