
Research Article
Diverse Mobile System for Location-Based Mobile Data

Qing Liao,1 Haoyu Tan,2 Wuman Luo,2 and Ye Ding 2

1Department of Computer Science and Technology, Harbin Institute of Technology (Shenzhen), China
2Guangzhou HKUST Fok Ying Tung Research Institute, Hong Kong University of Science and Technology, Hong Kong

Correspondence should be addressed to Ye Ding; dingye@ust.hk

Received 23 March 2018; Accepted 10 July 2018; Published 1 August 2018

Academic Editor: Ziming Zhao

Copyright © 2018 Qing Liao et al.This is an open access article distributed under theCreative CommonsAttribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The value of large amount of location-based mobile data has received wide attention in many research fields including human
behavior analysis, urban transportation planning, and various location-based services. Nowadays, both scientific and industrial
communities are encouraged to collect as much location-based mobile data as possible, which brings two challenges: (1) how to
efficiently process the queries of big location-based mobile data and (2) how to reduce the cost of storage services, because it is
too expensive to store several exact data replicas for fault-tolerance. So far, several dedicated storage systems have been proposed
to address these issues. However, they do not work well when the ranges of queries vary widely. In this work, we design a storage
system based on diverse replica scheme which not only can improve the query processing efficiency but also can reduce the cost of
storage space. To the best of our knowledge, this is the first work to investigate the data storage and processing in the context of big
location-based mobile data. Specifically, we conduct in-depth theoretical and empirical analysis of the trade-offs between different
spatial-temporal partitioning and data encoding schemes. Moreover, we propose an effective approach to select an appropriate
set of diverse replicas, which is optimized for the expected query loads while conforming to the given storage space budget. The
experiment results show that using diverse replicas can significantly improve the overall query performance and the proposed
algorithms for the replica selection problem are both effective and efficient.

1. Introduction

With the development of data collection capabilities, it is
much easier to collect a huge number of location-based
mobile data of users or objects via billions of electronic
devices such as mobile phones, tablet computers, vehicle
GPS navigators, and a wide variety of sensors. For example,
taxi companies monitor the mobility information of taxis;
telecom operators continuously record the locations of active
mobile phones; location-based service (LBS) providers keep
the mobile information of the users whenever they use
the services. Such large amount of location-based mobile
data is valuable for many research fields such as human
behavior analysis [1], urban transportation planning [2],
customized routing recommendation [3, 4], and location-
based advertising and marketing [5].

We called the datasets as location-based mobile data
because they share the following three common charac-
teristics. Firstly, all these datasets have at least three core

attributes: object ID, timestamp, and location. They may
as well contain other attributes which are called common
attributes that can vary among datasets. Secondly, most
queries on these datasets are associated with spatial and tem-
poral ranges.Hence, efficient indexing schemes for range data
filtering are required to improve overall query performance.
Thirdly, mainstream big data storage and management sys-
tems (e.g., HDFS, parallel RDBMSs, and NoSQL databases)
are not suitable for storing and processing these data. This
is because these systems do not naturally lend themselves to
dealing with spatial-temporal range queries, especially when
the number of the result records is very large.Themain reason
is that they cannot physically co-cluster records according to
spatial and temporal proximity, which leads to toomany slow
random disk accesses.

In recent years, several dedicated storage systems have
been proposed to store big location-based mobile data,
such as TrajStore [6], CloST [7], and Panda [8]. Data are
partitioned in terms of spatial and temporal attributes in

Hindawi
Wireless Communications and Mobile Computing
Volume 2018, Article ID 4217432, 17 pages
https://doi.org/10.1155/2018/4217432

http://orcid.org/0000-0002-4679-6951
https://doi.org/10.1155/2018/4217432

2 Wireless Communications and Mobile Computing

the above system. The records in the same partition are
physically stored together. To process a range query, we
only need to sequentially scan the partitions whose range
intersects with the query range. It is demonstrated that this
approach ismuchmore efficient than fetching a large number
of nonconsecutive disk pages. In addition, these systems can
achieve high data compression ratio by leveraging specialized
storage structures and encoding schemes.

However, the above existing dedicated systems do not
work well when the ranges of queries vary widely. The fun-
damental reason is that there is only one set of configuration
parameters to organize (i.e., partition and compress) the data.
It is obvious that we cannot find a single configuration that
is optimized for all possible queries. For example, consider
that data are partitioned into many small partitions (whose
size, in the extreme case, can be as small as a disk page).
On one hand, queries with small ranges can be processed
efficiently because we can prune most of the partitions. On
the other hand, queries with large ranges will incur high I/O
costs because a large number of partitions will be involved
and locating each of them will invoke a random page access.
In this context, these systems have to choose the parameters
optimized for the overall performance of the expected query
workloads. Note that the expected query workloads can be
either derived from historical queries [7] or known as a priori
knowledge [6].

In this paper, we explore the use of diverse replicas in the
context of storage systems for big location-basedmobile data.
In big data storage systems, e.g., HadoopHDFS, replication is
mainly used for data availability and durability, but not yet for
optimizing the performance of query processing. Hence, the
use of diverse replicas is a novel approach. The implications
of diverse replicas are twofold. First, data are partitioned and
compressed in multiple ways such that different queries can
pick the best-fit configuration to minimize the processing
time. Second, in spite of the diversity of physical data
organizations, diverse replicas can recover each other when
failures occur because they share the same logical view of
the data. Since we can replace the exact replicas with diverse
ones, the gain of query performance does not necessarily
come at the cost of more storage space. Though the potential
advantages of using diverse replicas are prominent, it is
nontrivial to determine which replicas to use. Concretely,
given a large location-based mobile dataset, a representative
workload, and a constraint on storage space, we need to find
an optimal or near-optimal set of diverse replicas in terms of
overall query performance. To address this problem, wemake
the following contributions:

(i) Wepropose BLOT, a systemabstraction that describes
an important class of location-basedmobile data stor-
age systems. Based on the BLOT system abstraction,
we conduct general discussions on how to integrate
diverse replicas into existing systems.

(ii) We formally define the replica selection problem that
finds the optimal set of diverse replicas in the context
of BLOT systems. Besides, we prove that this problem
is at least NP-complete.

(iii) We propose two solutions to the replica selection
problem, including an exact algorithm based on inte-
ger programming and an approximation algorithm
based on greedy strategy. In addition, we propose
several practical approaches to reduce the input size
of the problem.

(iv) Wedesign a simple yet effective costmodel to estimate
the cost of an arbitrary query on an arbitrary replica
configuration. The parameters of the cost model
can be either calculated by closed-form formula or
measured accurately by a few low-cost experiments.

(v) We evaluate our solutions using two typical deploy
environments of BLOT systems. The experiment
results confirm that using diverse replicas can signif-
icantly improve the overall query performance. The
results also demonstrate that the proposed algorithms
for the replica selection problemare both effective and
efficient.

The rest of this paper is organized as follows. Section 2
briefly summarizes the related works and Section 3 presents
the common designs of BLOT systems as well as the general
use of diverse replicas. Section 4 defines the replica selection
problem, proves its hardness, and describes the solutions.
Section 5 presents the query cost estimation model for BLOT
systems. Section 6 shows the experiment results and conducts
analysis and Section 7 concludes the paper.

2. Related Work

There is a plethora of works on storing spatial-temporal data
and efficient processing of range queries. Early studies, dating
back to 1970s and 1980s, mainly focus on indexing individual
points or trajectories. Representative works include k-d tree
[9], quadtree [10], R-tree [11], and TB-tree [12]. These data
structures incur many random reads which are inefficient
when the number of records in the query result is large. To
address this issue, TrajStore [6] and PIST [13] attempt to
co-locate data according to spatial and temporal proximities
and use relatively large partition size. Both TrajStore and
PIST cannot scale to terabytes of data because they can
only consider nondistributed environments. CloST [7] and
SpatialHadoop [14] are two Hadoop-based systems which
aim at providing scalable distributed storage and parallel
query processing of big location-based mobile data. SATO
[15] is a spatial data partitioning framework that can quickly
analyze and partition spatial data with an optimal spatial
partitioning strategy for scalable query processing. Note that
TrajStore, PIST, CloST, SpatialHadoop, and SATO can be
viewed as concrete instances of BLOT systems without using
diverse replicas.

Recommending a physical configuration for a given
workload has been widely studied since 1987 [16]. Most
of the existing works [17–23] propose effective methods to
estimate the cost of a given workload over candidate physical
configurations. However, only a few of them consider the
situations where data can be replicated [20, 21]. An earlier
work introduces the technique of Fractured Mirrors [24]

Wireless Communications and Mobile Computing 3

Ｍ；

ＭＫ

Ｍ＜

[Ｎ；1, Ｎ；2)

[Ｎb1, Ｎb2) [Ｎb2, Ｎb3) [Ｎb3, Ｎb4)

[Ｎ；2, Ｎ；3) [Ｎ；3, Ｎ；4) · · ·

· · ·

· · ·

· · ·
· · ·

Encoding

Encoding

File

Files to scan Extracted Records
Query Results

FileFile

Checking Partition Index Decoding Filtering by Query Range

File

File File

[ＮＫ1, ＮＫ2)

...

１Ｏ？ＬＳ

４Ｋ=[ＮＫ1, ＮＫ2)
ＭＫ

／）＄1,４）－％1, ，／＃1, ...
／）＄2,４）－％2, ，／＃2, ...

／）＄2,４）－％2, ，／＃2, ...

／）＄3,４）－％3, ，／＃3, ...
／）＄3,４）－％3, ，／＃3, ...

Ｍ；-Ｎ；2-Ｎ；3
Ｍ；-Ｎ；3-Ｎ；4
Ｍb-Ｎb2-Ｎb3
Ｍb-Ｎb3-Ｎb4

Ｍ；-Ｎ；1-Ｎ；2 Ｍ；-Ｎ；2-Ｎ；3 Ｍ；-Ｎ；3-Ｎ；4

Ｍb-Ｎb1-Ｎb2 Ｍb-Ｎb2-Ｎb3 Ｍb-Ｎb3-Ｎb4

Figure 1: Overview of BLOT systems.

to store data in both row-fashion and column-fashion. For
data partitioning, it has been proved in [25] that finding
the optimal vertical partitioning is an NP-hard problem.
Therefore, the are a number of works that focus on heuristic
algorithms for vertical partitioning optimization [26–30].
For workload size reduction, the authors of [31] propose a
workload compression method to reduce the size of SQL
workloads. A more scalable workload grouping method is
proposed in [20]. Most of the above works are based on the
relational data model while our work is based on the BLOT
data model which is more suitable for big location-based
mobile data.

3. BLOT Systems and Diverse Replicas

In this section, we introduce BLOT, a system abstraction that
reflects common designs of an important class of dedicated
systems for storing big location-based mobile data. We refer
to such systems as BLOT systems. Figure 1 shows an overview
of how data are organized and queried in BLOT systems.

BLOT systems are primarily aimed at providing a storage
layer that supports efficient data filtering by spatial-temporal
ranges for high-level data analytical systems such as RDBMSs
and Hadoop. They can be also used as standalone systems to
dedicatedly answer range queries. The advantages of BLOT
systems have been demonstrated by a number of existing
works such as PIST [13], TrajStore [6], CloST [7], and Spatial
Hadoop [14]. Compared with other solutions (e.g., using the
original Hadoop or NoSQL databases), the speed of range
queries in a BLOT system can be up to one to two orders of
magnitude faster while using a much smaller storage space
(typically 20% or less). In the rest of this section, we will

first describe the general design of BLOT systems and then
explain why using diverse replicas can significantly improve
the overall system performance.

3.1. Data Model. A BLOT system stores a large number of
location-based mobile records. Each record is in the form
of (OID, TIME, LOC, 𝐴1, . . . , 𝐴𝑚), where OID is an object ID,
TIME is a timestamp, LOC is the location of object OID at time
TIME, and 𝐴1 through 𝐴𝑚 are other attributes that can vary
among different datasets. We refer to the first three attributes
as core attributes and the others as common attributes. Any
dataset that naturally fits into this data model, i.e., containing
and emphasizing core attributes, can be viewed as location-
based mobile data.

3.2. Data Partitioning. Based on the data model, BLOT
systems split a large dataset into relatively small partitions
using core attributes. In TrajStore and CloST, for example,
data are first partitioned by location (LOC) and then further
partitioned by time (TIME). Records in the same partition
are stored together in a storage unit which is optimized
for sequential read. For instances, a storage unit can be an
object stored in Amazon S3, a file on HDFS, a segment
of a file on a local file system, etc. Typically, the size of a
storage unit in BLOT systems is much larger than that of
a disk page, ranging from hundreds of kilobytes to several
megabytes. The advantages of using relatively large storage
units are twofold. First, queries with large spatial-temporal
ranges can be efficiently processed because data are mostly
accessed sequentially. Second, it makes the number of storage
units sufficiently small such that we can easily maintain the

4 Wireless Communications and Mobile Computing

Table 1: Comparison of involved partitions and estimated scans in Figure 2.

Case 1 Case 2 Case 3
Involved partitions 4 3 8
Estimated data to scan 100% 30% 50%

Selecting the optimal replica set
and generating replicas

Raw
Data

Query Cost Estimation

Candidate replica
configurations

Workload
(historical queries) Query

Storage
budget

Estimated cost of all
queries on all

candidate replicas

Estimated cost of the
issued query on all the

existing replicas

Selecting the best replica to
process the query

· · ·

ＭＫ ＭＫ ＭＫ

Figure 2: Using diverse replicas in BLOT systems.

partitioning index, a small global data structure to index the
spatial-temporal ranges of all data partitions.

3.3. Data Encoding. A data partition can be stored in any
format. A popular approach is to store each partition as a CSV
file with each line specifying a record. While this format is
easy to process, the storage utilization is low. It is therefore
undesirable for huge datasets, especially when using cloud
storage systems that charge for every bit stored. To reduce the
storage size, a BLOT system usually uses various compression
techniques to encode records in a partition. For example, we
can

(1) use binary format instead of text format;
(2) apply a general compression algorithm to compress

the entire partition;
(3) organize the data in column fashion and then apply

column-wise encoding schemes (e.g., delta encoding
and run-length encoding).

Moreover, we can use the combinations of the above
techniques to further reduce the storage size. Note that higher
compression ratio comes at the cost of longer decompression
time which may degrade the performance of query process-
ing.

3.4. Query Processing. To process range queries in a BLOT
system, we first search for involved partitions, i.e., the par-
titions whose range intersect with the query range. Next,
we read and decompress each involved partition to extract
all the records. Finally, we check the extracted records
and output the ones within the query range. Note that it
is straightforward to conduct parallel query processing by
scanning multiple partitions simultaneously.

In general, the cost of processing an involved partition
consists of two parts: scan cost which includes the cost of
extracting and filtering the records and extra cost which
includes the cost of initializing the procedure, locating the
partition, loading the decoder, cleaning up the procedure, etc.
In a typical BLOT system, scan cost is usually proportional to
the total number of records in the partition while extra cost
is usually a constant decided by the corresponding encoding
scheme. Therefore, for a specific query, the query cost is
determined by the total amount of records to be scanned
and the total number of involved partitions. Consider three
partitioning schemes and a query shown in the upper part
of Figure 2. For illustration purpose, we omit the temporal
dimension and highlight the partitions that are not involved.
Table 1 compares the number of involved partitions and
the estimated percentage of data to scan among the three
cases.

Wireless Communications and Mobile Computing 5

In this example, it is obvious that the middle case has the
lowest query cost because both the scan cost and the extra
cost are the lowest. However, it is unclear whether the query
cost of the left case is higher or lower than that of the right
case. To answer that question, wewill develop an effective cost
estimation model in Section 5.

3.5. Diverse Replicas. From Figure 2 we can see that the
cost of a query may vary a lot with different partitioning
schemes. Undoubtedly, encoding scheme also has a signifi-
cant influence on query performance. Most existing BLOT
systems can adaptively optimize the configuration of the
physical storage organization, such as spatial and temporal
partition sizes, based on analyzing the historical queries.
However, in the cases when the range of queries has high
variation, the optimal configuration may still be far from
satisfactory in terms of overall query performance. It is
intuitive that using multiple copies of data with different
physical organizations can mitigate the “one-size-does-not-
fit-all” problem. Traditionally, this is a typical performance
tuning approach that trades space for time. However, in the
context of big data storage systems where data are replicated
for fault-tolerance, we can make better use of the storage
space by replacing exact replicaswith diverse ones. As a result,
the overall query performance can be improved without
necessarily using more storage space.

Figure 2 illustrates the use of diverse replicas in BLOT
systems. There are two components that are key to the
success of such systems. First, the system must be able
to estimate the query cost both efficiently and effectively.
Query cost estimation helps the system to determine which
one of the existing replicas is supposed to have the least
processing time for the issued query. For example, in Fig-
ure 2, the second replica is chosen to answer the given
query. Besides, the estimated costs of all queries in the
given workload on all candidate replicas are important
inputs for the second component which selects a set of
diverse replicas (and generates the actual replicas) that is
optimized for a given workload under a storage constraint.
The storage constraint is a hard constraint indicating the
upper bound of the available storage space. It turns out that
selecting the optimal set of diverse replicas in BLOT systems
is a challenging problem. To the best of our knowledge,
it has not been well investigated in the previous works.
Therefore, we will elaborate on this problem in the next
section.

4. Replica Selection Problem

Given a very large location-based mobile dataset 𝐷, we want
to choose a set of diverse replicas which conforms to a storage
size constraint and optimizes the overall performance for a
given workload. In this section, we first formally define the
replica selection problem and then propose several practical
solutions.

4.1. Problem Definition. Before formalizing the replica selec-
tion problem, we first give the formal definitions of several
important concepts mentioned in Sections 3 and 4.

Definition 1 (partitioning scheme). Let 𝑈 denote the spatial-
temporal bounding box of𝐷. A spatial-temporal partitioning
scheme 𝑃 = {𝑝1, 𝑝2, . . . , 𝑝𝑛} is a spatial-temporal partition of𝑈, where

⋃
𝑖

𝑝𝑖 = 𝑈, (1)

and
𝑝𝑖 ∩ 𝑝𝑗 = 0, ∀𝑖, 𝑗 ∈ {1, 2, . . . , 𝑛} , 𝑖 ̸= 𝑗. (2)

Particularly, 𝑝𝑖 is called the 𝑖-th spatial-temporal partition of𝑈.
Definition 2 (data partition). Given a partitioning scheme 𝑃,
for any partition 𝑝𝑖 ∈ 𝑃, the corresponding data partition𝑑𝑖 is the set of all records in 𝐷 that are spatial-temporally
contained by 𝑝𝑖. In addition, we define

(1) 𝐷(𝑝𝑖) = 𝑑𝑖;
(2) 𝑃(𝑑𝑖) = 𝑝𝑖;
(3) 𝐷(𝑃) = {𝑑𝑖 | 𝑃(𝑑𝑖) ∈ 𝑃}.

By Definition 1, we have

⋃
𝑖

𝑑𝑖 = 𝐷, (3)

and
𝑑𝑖 ∩ 𝑑𝑗 = 0, ∀𝑖, 𝑗 ∈ {1, 2, . . . , 𝑛} , 𝑖 ̸= 𝑗. (4)

Since it is usually clear from the context, we often use the term
partition to indicate both spatial-temporal partition (i.e., 𝑝𝑖)
and data partition (i.e., 𝑑𝑖). In addition, we use 𝜇(𝑝) and 𝜇(𝑑)
to denote the spatial-temporal range of a spatial partition 𝑝
and that of a data partition 𝑑, respectively.
Definition 3 (encoding scheme). Given a data partition 𝑑, an
encoding scheme 𝐸 is an algorithm that generates a physical
storage layout for 𝑑.
Definition 4 (replica and replica set). A replica 𝑟 = ⟨𝐷, 𝑃, 𝐸⟩
is a physical organization of all records in𝐷 in which records
are partitioned by 𝑃 and each partition is encoded by 𝐸. A
replica set 𝑅 = {𝑟1, 𝑟2, . . . , 𝑟𝑚} is a set of diverse (i.e., unique)
replicas.

We use 𝑃(𝑟) and 𝐸(𝑟) to indicate the partitioning scheme
and the encoding scheme of 𝑟, respectively. Note that the
above definition requires that all partitions are encoded by the
same encoding scheme.Nevertheless, the essential theoretical
analysis in the following can be easily generalized for BLOT
systems that allow a separate encoding scheme for each
partition.

Definition 5 (storage size). The storage size of a replica 𝑟,
denoted by 𝜂(𝑟), is the size of storage space required to store
all encoded partitions in 𝑟. The storage size of a replica set 𝑅,
denoted by 𝜂(𝑅), is the total storage size of all replicas in 𝑅,
i.e.,

𝜂 (𝑅) = ∑
𝑟𝑗∈𝑅

𝜂 (𝑟𝑗) . (5)

6 Wireless Communications and Mobile Computing

Definition 6 (query and workload). A (range) query 𝑞 is
a process that extracts all records in 𝐷 that are con-
tained by a cuboid whose size is specified by ⟨𝛿𝑥, 𝛿𝑦, 𝛿𝑡⟩
and centroid is specified by ⟨𝑥, 𝑦, 𝑡⟩. A workload 𝑊 ={(𝑞1, 𝑤1), (𝑞2, 𝑤2), . . . , (𝑞𝑛, 𝑤𝑛)} is a set of unique queries with
each query associated with a non-negative weight.

Similar to 𝜇(𝑝) and 𝜇(𝑑), we use 𝜇(𝑞) to denote the
spatial-temporal range of 𝑞, i.e., ⟨𝑥, 𝑦, 𝑡, 𝛿𝑥, 𝛿𝑦, 𝛿𝑡⟩.Theweight
of a query in a workload can be interpreted as the importance
(frequency, priority, etc.) of the query. In some situations, the
weights are normalized such that

𝑛∑
𝑖=1

𝑤𝑖 = 1. (6)

In particular, we use 𝑄(𝑊) to denote the set of all queries in𝑊, i.e., 𝑄(𝑊) = {𝑞1, 𝑞2, . . . , 𝑞𝑛}.
Below we define query cost and workload cost based on

the query processing mechanism described in Section 3.4.

Definition 7 (query cost and workload cost). Given a replica𝑟 ∈ 𝑅 and a query 𝑞 ∈ 𝑄(𝑊), the query cost of 𝑞 on 𝑟 is
denoted as 𝜌(𝑞, 𝑟). Therefore,

𝜌 (𝑞, 𝑅) = min
𝑟j∈𝑅
𝜌 (𝑞, 𝑟𝑗) , (7)

and

𝜌 (𝑊, 𝑅) = ∑
(𝑞𝑖 ,𝑤𝑖)∈𝑊

𝑤𝑖 ⋅ 𝜌 (𝑞𝑖, 𝑅) . (8)

Now we can formally define the problem of finding an
optimal set of diverse replicas.

Definition 8 (replica selection problem). Given a dataset 𝐷,
a workload 𝑊 = {(𝑞1, 𝑤1), (𝑞2, 𝑤2), . . . , (𝑞𝑛, 𝑤𝑛)}, a set of
candidate replicas 𝑅 = {𝑟1, 𝑟2, . . . , 𝑟𝑚}, and a storage budget𝑏, find a replica set 𝑅∗ such that

(1) 𝑅∗ ⊆ 𝑅;
(2) 𝜂(𝑅∗) ≤ 𝑏;
(3) 𝜌(𝑊, 𝑅∗) ≤ 𝜌(𝑊, 𝑅󸀠) for all 𝑅󸀠 ⊆ 𝑅 such that 𝜂(𝑅󸀠) ≤𝑏.
In most situations, 𝑅 contains all possible replicas, i.e., if

we have𝑚𝑃 partitioning schemes and𝑚𝐸 encoding schemes,
then𝑚 = 𝑚𝑃 ∗ 𝑚𝐸.

To find the optimal replica set 𝑅∗, we need to know the
query cost 𝜌(𝑞𝑖, 𝑟𝑗) and the storage size 𝜂(𝑟𝑗) for all 𝑞𝑖 ∈ 𝑄(𝑊)
and 𝑟𝑗 ∈ 𝑅 in the first place. For 𝜂(𝑟𝑗), we can estimate it using
the compression ratio of the corresponding encoding scheme𝐸(𝑟𝑗). Since compression ratio is stable in most situations, it
can be effectively measured with a small sample of 𝐷. For𝜌(𝑞𝑖, 𝑟𝑗) and we will propose a highly accurate cost model
in Section 5 to estimate query cost without generating actual
replicas.

For the rest of this section, we assume that all 𝜌(𝑞𝑖, 𝑟𝑗)
and 𝜂(𝑟𝑗) are already given and focus on designing practical
algorithms to solve the problem.

4.2. Exact Solution. Before presenting the exact solution, we
first prove the following theorem.

Theorem 9 (NP-hard). The replica selection problem is NP-
Hard.

Proof. Weprove the theorem by reducing from theminimum
weight set cover problem [32] to the replica selection prob-
lem. Specifically, given a set of 𝑛 elements𝐴 = {𝑎1, 𝑎2, . . . , 𝑎𝑛},
and a set of𝑚 sets 𝑆 = {𝑠1, 𝑠2, . . . , 𝑠𝑚}, where

𝑠𝑖 ⊆ 𝐴, ∀𝑠𝑖 ∈ 𝑆, (9)

and

⋂
𝑠𝑖∈𝑆

𝑠𝑖 = 𝐴, (10)

the minimum weight set cover problem is to find a set 𝑆∗ ⊆ 𝑆
such that

󵄨󵄨󵄨󵄨𝑆∗󵄨󵄨󵄨󵄨 ≤ |𝑆| , (11)

and

⋂
𝑠𝑖∈𝑆
∗

𝑠𝑖 = 𝐴, (12)

and the cost of 𝑆∗ is minimumwhere the cost of 𝑆∗ is defined
as

|𝑆∗|∑
𝑖=1

𝑐𝑖. (13)

where 𝑐𝑖 is the cost (weight) of set 𝑠𝑖.
The minimum weight set cover problem is a well-known

NP-hard problem [32]. In this proof we will demonstrate
that we can solve any instance of the minimum weight set
cover problem by constructing and solving an instance of the
replica selection problem.

In correspondence to 𝐴, we construct a workload 𝑊 ={(𝑞1, 1), (𝑞2, 1), . . . , (𝑞𝑛, 1)}, where all weights are set to 1. In
correspondence to 𝑆, we construct a set of candidate replicas𝑅 = {𝑟1, 𝑟2, . . . , 𝑟𝑚} where all 𝜂(𝑟𝑗) ∈ 𝑅 are set to 0. The query
cost is set as follows:

(1) 𝜌(𝑞𝑖, 𝑟𝑗) = 0 if 𝜌(𝑞𝑖, 𝑟𝑗) = 𝜌(𝑞𝑖, 𝑅);
(2) 𝜌(𝑞𝑖, 𝑟𝑗) = +∞ if 𝜌(𝑞𝑖, 𝑟𝑗) ̸= 𝜌(𝑞𝑖, 𝑅).
According to Definition 7, we can interpret 𝜌(𝑞𝑖, 𝑟𝑗) = 0

as that answering 𝑞𝑖 on 𝑟𝑗 requires the minimum query cost,
and 𝜌(𝑞𝑖, 𝑟𝑗) = +∞ as that answering 𝑞𝑖 on 𝑟𝑗 requires more
query cost than the minimum.

For the ease of presentation, we use problem 𝛼 and
problem 𝛽 to denote the instance of the minimum weight set
cover problem and the corresponding instance of the replica
selection problem, respectively.

Suppose that we have found an optimal replica set 𝑅∗
in problem 𝛽. We can then construct the corresponding set𝑆∗ = {𝑠𝑗 | for all 𝑗 such that 𝑟𝑗 ∈ 𝑅∗} in problem 𝛼. To
decide whether problem 𝛼 is feasible, we need to discuss

Wireless Communications and Mobile Computing 7

two cases. On one hand, if 𝜌(𝑊, 𝑅∗) = 0 in problem 𝛽,
then any query in 𝑄(𝑊) can be answered instantly by some
replica in 𝑅∗. According to our construction process from
problem 𝛼 to problem 𝛽, it follows that any element in 𝐴
must be covered by some set in 𝑆∗. In this case, we can safely
conclude that problem 𝛼 is feasible. On the other hand, if𝜌(𝑊, 𝑅∗) = +∞ in problem 𝛽, we prove that problem 𝛼 is
infeasible by contradiction. Assume 𝑆∗∗ is a feasible solution
to problem 𝛼. We can then construct a replica set 𝑅∗∗ = {𝑟𝑗 |
for all 𝑗 such that 𝑠𝑗 ∈ 𝑆∗∗} for problem 𝛽. We can easily
verify that 𝜌(𝑊, 𝑅∗∗) = 0, which follows that 𝜌(𝑊, 𝑅∗∗) <𝜌(𝑊, 𝑅∗). This contradicts with the fact that 𝑅∗ is an optimal
replica set in problem 𝛽.

Thus, we have proved that problem𝛼 is feasible if and only
if the optimal workload cost in the corresponding problem𝛽 equals 0. We therefore conclude that the replica selection
problem is equally hard to the set covering decision problem.
This completes the proof.

Though Theorem 9 eliminates the possibility of finding
the optimal replica set in polynomial time, an exact solution
is still useful when the input size is relatively small. Our exact
solution is to model the original problem as a 0-1 Mixed
Integer Programming (MIP) problem [33] and hand it over to
aMIP solver.The challenge here is how tomodel the problem
properly to ensure that the optimal solution of the 0-1 MIP
problem is the optimal solution of the original problem.

Let 𝑛 = |𝑊| and𝑚 = |𝑅|. For any 𝑖 ∈ {1, 2, . . . , 𝑛} and any𝑗 ∈ {1, 2, . . . , 𝑚}, let 𝑥𝑗 be a 0-1 variable indicating whether
replica 𝑟𝑗 is present in the replica set𝑅 and𝑦𝑖𝑗 be a 0-1 variable
indicatingwhether query 𝑞𝑖 is processed on replica 𝑟𝑗.We first
list the constraints as follows.

The constraint related to storage size is

𝜂 (𝑅) = 𝑚∑
𝑗=1

𝜂 (𝑟𝑗) ≤ 𝑏. (14)

We use exactly one replica to process each query:
𝑚∑
𝑗=1

𝑦𝑖𝑗 = 1, ∀𝑖 ∈ {1, 2, . . . , 𝑛} . (15)

Any replica that is chosen to process at least one query
must be present in 𝑅:

𝑦𝑖𝑗 ≤ 𝑥𝑗, ∀𝑖 ∈ {1, 2, . . . , 𝑛} , 𝑗 ∈ {1, 2, . . . , 𝑚} . (16)

We can see that (16) specifies 𝑛 × 𝑚 constraints. Because
an MIP problem may become extremely difficult in the
presence of too many constraints, it is preferable to use fewer
constraints. Therefore, we use the following 𝑚 constraints
instead (which are slightly relaxed but do not change the
optimal solution):

𝑛∑
𝑖=1

𝑦𝑖𝑗 ≤ 𝑛 ⋅ 𝑥𝑗, ∀𝑗 ∈ {1, 2, . . . , 𝑚} . (17)

Let 𝑐𝑖𝑗 = 𝜌(𝑞𝑖, 𝑟𝑗); we use the following objective function:
𝑛∑
𝑖=1

𝑚∑
𝑗=1

𝑤𝑖 ⋅ 𝑐𝑖𝑗 ⋅ 𝑦𝑖𝑗. (18)

Putting them together, we need to minimize (18) subject
to the constraints specified by (14), (15), and (17). The details
are shown in the following:

minimize:
𝑛∑
𝑖=1

𝑚∑
𝑗=1

𝑤𝑖 ⋅ 𝑐𝑖𝑗 ⋅ 𝑦𝑖𝑗, (19)

subject to:
𝑚∑
𝑗=1

𝜂 (𝑟𝑗) ≤ 𝑏,
𝑚∑
𝑗=1

𝑦𝑖𝑗 = 1, ∀𝑖 ∈ {1, 2, . . . , 𝑛} ,
𝑛∑
𝑖=1

𝑦𝑖𝑗 ≤ 𝑛 ⋅ 𝑥𝑗, ∀𝑗 ∈ {1, 2, . . . , 𝑚} .

(20)

As 𝑥𝑗 and 𝑦𝑖𝑗 are 0-1 variables, this is a well-formed 0-1
MIP problem that can be solved directly by MIP solvers.

4.3. Reducing the Problem Size. In general, the computation
time of solving anMIP problem grows exponentially with the
problem size, i.e., the number of decision variables. The total
number of decision variables in our formulation is 𝑚(𝑛 + 1)
(all 𝑥𝑖𝑗 and 𝑦𝑗) which could be very large even though both𝑚 and 𝑛 are relatively small. For example, there are more
than 105 decision variables when we have 20 partitioning
schemes, 5 encoding schemes, and 1000 queries in the given
workload. Though this is a typical scenario in practice, it
already makes the formulated MIP problem computationally
infeasible (on up-to-date computers nowadays). Thus, to
make the aforementioned solutionmore scalable, we propose
several practical techniques that can significantly reduce the
problem size.

4.3.1. Reducing the Workload Size. If we directly use all
historical queries recorded in the query log to form the
input workload, then 𝑚 may increase too fast in a working
system where new queries are issued frequently. To address
this issue, we treat each 𝑞 ∈ 𝑄(𝑊) as a group of similar
queries. Specifically, we use only one grouped query, denoted
by 𝑄𝐺, to represent all the queries with the same size of
spatial-temporal range. Accordingly, we adjust the definition
of query inDefinition 6by replacing𝜇(𝑞) = ⟨𝑥, 𝑦, 𝑡, 𝛿𝑥, 𝛿𝑦, 𝛿𝑡⟩
with 𝜇(𝑄𝐺) = ⟨𝛿𝑥, 𝛿𝑦, 𝛿𝑡⟩. This variation reflects the obser-
vation that queries with the same size of range often occurs
many times in real situations. For example, it is common
that users use an equal-sized grid to decompose the space
and then conduct simple statistics for each grid cell. It is
worth pointing out that estimating the cost of a grouped
query is generally more difficult than estimating a single
query. We will address this issue in Section 5. In addition, if
the number of different range sizes is still large, we can use
clustering algorithms such as 𝐾-means to cluster the range
sizes and only use the cluster centers to construct the input
workload. In this way, we have full control of the value of 𝑚
by manipulating the number of clusters.

8 Wireless Communications and Mobile Computing

Input: 𝑊, 𝑅, 𝑏, 𝜌(𝑞𝑖, 𝑟𝑗) for all 𝑞𝑖 ∈ 𝑄(𝑊) and 𝑟𝑗 ∈ 𝑅
Output: 𝑅∗

(1) begin
(2) 𝑅∗ ←󳨀 0;
(3) while 𝜂(𝑅∗) < 𝑏 do
(4) 𝑟∗ ←󳨀 null;
(5) 𝑠𝑐𝑜𝑟𝑒∗ ←󳨀 0;
(6) for 𝑟 ∈ 𝑅 do

(7) 𝑠𝑐𝑜𝑟𝑒 ←󳨀 𝜌(𝑊, 𝑅∗) − 𝜌(𝑊, 𝑅∗ ∪ {𝑟})𝜂(𝑟) ;

(8) if 𝑠𝑐𝑜𝑟𝑒 > 𝑠𝑐𝑜𝑟𝑒∗ then
(9) 𝑠𝑐𝑜𝑟𝑒∗ ←󳨀 𝑠𝑐𝑜𝑟𝑒;
(10) 𝑟∗ ←󳨀 𝑟;
(11) if 𝑟∗ is null then
(12) break;
(13) else
(14) 𝑅∗ ←󳨀 𝑅∗ ∪ {𝑟∗};
(15) 𝑅 ←󳨀 𝑅 \ {𝑟∗};
(16) return 𝑅∗.
Algorithm 1: A greedy replica selection algorithm.

4.3.2. Reducing the Number of Candidate Replicas. Consider-
ing two replicas 𝑟1, 𝑟2 ∈ 𝑅 satisfying

𝜂 (𝑟1) ≤ 𝜂 (𝑟2) , (21)

and

𝜌 (𝑞𝑖, 𝑟1) ≤ 𝜌 (𝑞𝑖, 𝑟2) , ∀𝑞𝑖 ∈ 𝑄 (𝑊) , (22)

we refer to this case as replica 𝑟1 dominates replica 𝑟2.
Obviously, if we use 𝑅\{𝑟2} instead of 𝑅 as the input
candidate replicas, it will not change the optimal workload
cost 𝜌(𝑊, 𝑅∗). Therefore, we can safely prune 𝑟2 from 𝑅. In
general, it is more common that a replica is dominated by a
set of replicas. Concretely, given a replica 𝑟 ∈ 𝑅 and a replica
set 𝑅𝐷 ⊆ 𝑅, we say that replica set 𝑅𝐷 dominates replica 𝑟 if

(1) 𝑟 ∉ 𝑅𝐷;
(2) 𝜂(𝑅) ≤ 𝜂(𝑟);
(3) 𝜌(𝑞𝑖, 𝑅𝐷) ≤ 𝜌(𝑞𝑖, 𝑟), ∀𝑞𝑖 ∈ 𝑄(𝑊).
Ideally, we want to find a minimum dominant replica set𝑅𝐷 ⊆ 𝑅 such that 𝑅𝐷 dominates any replica 𝑟 ∈ 𝑅\𝑅𝐷.

However, as we can prove that the replica selection problem
itself isNP-hard, we do not pursue aminimum𝑅𝐷 in practice.
Instead, we use a rough yet effective heuristic algorithm to
find a suboptimal dominant replica set.

4.4. Approximation Solution. In this section, we propose
several approximate algorithms to select a near-optimal set
of replicas based on the reduced problem size as illustrated in
Section 4.3. Approximation algorithm is suitable in case that
the number of candidate replicas is still large after pruning or
the workload is changing rapidly so that the replica set should
be reselected frequently.

4.4.1. Greedy Strategy. First we give a fast greedy algorithm
to solve the replica selection problem. This algorithm is
adopted and extended from theminimumweighted set cover
algorithm. As shown in Algorithm 1, we add one replica at
a time to the replica set 𝑅∗ such that in each step the added
replica 𝑟maximizes,

𝜌 (𝑊, 𝑅∗) − 𝜌 (𝑊, 𝑅∗ ∪ {𝑟})
𝜂 (𝑟) , (23)

until the storage budget is exhausted or the overall workload
cost 𝜌(𝑊, 𝑅∗) cannot be further decreased by adding any one
of the remaining replicas. Before the storage size is full, each
time we add one replica into the replica set, in worst case we
need iterate |𝑅| times until the storage space is full. In each
iteration, we

(1) score all |𝑅\𝑅∗| replica candidates that are not added
to 𝑅∗ yet;

(2) add the replica with highest score into 𝑅∗.
The scoring step computes the gain of each replica

candidates that may be added to 𝑅∗; thus in this step all 𝑞 ∈𝑄(𝑊) are compared with the costs on the current replica and
the candidate replicas. Hence, this step takes 𝑂(|𝑅||𝑄(𝑊)|)
time, and it will result in an 𝑂(log 𝑛) approximation ratio,
where 𝑛 is size of the set of all queries 𝑞 ∈ 𝑄(𝑊).The running
time of this greedy algorithm is 𝑂(𝑛𝑚2), where 𝑚 is size of
the set of candidate replicas. In Section 6, we will see that the
approximation ratio of the greedy algorithm is quite desirable
(lower than 1.3 in most cases) in practice.

4.4.2. LP Rounding Strategy. Although the greedy strategy
is simple to implement and achieves good approximate
result in practice, the best we can hope for the greedy
strategy is a logarithmic approximate ratio (log 𝑛). When the

Wireless Communications and Mobile Computing 9

Input: 𝑊, 𝑅, 𝑏, 𝜌(𝑞𝑖, 𝑟𝑗) for all 𝑞𝑖 ∈ 𝑄(𝑊) and 𝑟𝑗 ∈ 𝑅,𝑁𝑖 for all 𝑞𝑖 ∈ 𝑄(𝑊)
Output: 𝑅∗

(1) begin
(2) Γ ←󳨀 0;
(3) sort 𝑞𝑖 ∈ 𝑄(𝑊) by 𝐶𝑖 in ascend order;
(4) while 𝜂(𝑅∗) < 𝑏 and 𝑄(𝑊) ̸= 0 do
(5) choose 𝑞𝑖 from 𝑄(𝑊) with smallest 𝐶𝑖;
(6) 𝛾 ←󳨀 0;
(7) foreach 𝑞𝑖󸀠 ∈ Γ do
(8) if 𝑁𝑖 ∩ 𝑁𝑖󸀠 ̸= 0 then
(9) 𝛾 ←󳨀 1;
(10) break;
(11) if 𝛾 = 0 then
(12) Γ ←󳨀 Γ ∪ {𝑞𝑖};
(13) 𝑄(𝑊) ←󳨀 𝑄(𝑊) \ {𝑞𝑖};
(14) 𝑅∗ ←󳨀 0;
(15) foreach 𝑞𝑖󸀠 ∈ Γ do
(16) 𝑅∗ ←󳨀 𝑟∗ with 𝜌(𝑞𝑖󸀠 , 𝑟∗) = 𝜌(𝑞𝑖󸀠 , 𝑁𝑖󸀠);
(17) return 𝑅∗.

Algorithm 2: A LP rounding based algorithm.

quantity of queries goes large, the performance guarantee will
drop accordingly. In this section we introduce a constant-
factor approximate algorithm based on linear programming
rounding [34]. The linear programming rounding strategy
consists of three stages:

(1) Formulating the problem to integer linear program-
ming

(2) Relaxing the integral constraints and finding the
optimal solution for the relaxed linear programming

(3) Rounding the fractional solution of the linear pro-
gramming and producing an integral solution.

In the replica selection problem, the LP rounding strategy
is based on the MIP proposed in Section 4.2; thus we already
finished stage 1. In stage 2, we further relax the MIP by
allowing 𝑥𝑗 ≤ 1 and 𝑦𝑖𝑗 ≥ 0. Then we can solve the LP in
polynomial time resulting fractional 𝑥𝑗 and 𝑦𝑖𝑗. In stage 3,
since general rounding techniques cannot be directly adopted
on the replica selection problem, we present the following
rounding strategy.

Suppose we have found an optimal solution for the LP in
stage 2. For any query 𝑞𝑖 ∈ 𝑄(𝑊), we define theneighborhoods
of 𝑞𝑖 as

𝑁𝑖 = {𝑟𝑗 ∈ 𝑅∗ | 𝑦𝑖𝑗 > 0} . (24)

All the replicas 𝑟𝑗 that serve 𝑞𝑖 fractionally are the neighbor-
hoods of 𝑞𝑖. Further we define cluster as a set of queries and
replicas with the center 𝑞𝑖 ∈ 𝑄(𝑊). In the LP, we denote

𝐶𝑖 = ∑
𝑟𝑗∈𝑅
∗

𝑐𝑖𝑗 ⋅ 𝑦𝑖𝑗, (25)

and thus the total query cost is

𝜌 (𝑊, 𝑅∗) = ∑
(𝑞𝑖 ,𝑤𝑖)∈𝑊

𝑤𝑖 ⋅ 𝐶𝑖. (26)

Now we sort queries 𝑞𝑖 by 𝐶𝑖 in ascending order and
then iteratively assign each query and replica to clusters until
all queries and replicas are assigned to one cluster. In each
iteration, we pick the query 𝑞𝑖 with the smallest 𝐶𝑖. If 𝑁𝑖 ∩𝑁𝑖󸀠 = 0 for any existing cluster center 𝑞𝑖󸀠 ∈ Γ, we open a
new cluster 𝑖 and add 𝑞𝑖 into the new cluster and denote 𝑞𝑖
as the cluster center. If 𝑁𝑖 ∩ 𝑁𝑖󸀠 ̸= 0, we add 𝑞𝑖 to cluster 𝑖󸀠.
Then we can round the fractional solution: for each cluster,
we select the cheapest replica 𝑟𝑖 for each cluster center 𝑞𝑖
in 𝑁𝑖 and assign queries in this cluster to replica 𝑟𝑖. The
overall constant-factor approximation algorithm is shown in
Algorithm 2. Theorem 10 provides the approximate ratio of
the LP rounding based strategy.

Theorem 10. The proposed LP rounding strategy is a 3-factor
approximation algorithm.

Proof. Suppose the optimal solution of the MIP isΘ0 and the
optimal solution of the relaxed LP isΘ1, sinceΘ0 is a feasible
solution of Θ1, we can prove Θ0 ≤ Θ1 [35]. In the rounding
solution, we select replicas that have the cost at most 4Θ1.

Assuming that 𝑞𝑖󸀠 is the center of cluster 𝑘, we have
selected replica 𝑟𝑗𝑘 for any query 𝑞𝑖 in cluster 𝑘. For 𝑞𝑖, there
are three types of query cost 𝜌(𝑞𝑖, 𝑁𝑖) on replica 𝑟𝑗𝑘 :

(1) 𝑞𝑖 is in cluster 𝑘 and 𝑐𝑖𝑗𝑘 ≤ 𝑐𝑖󸀠𝑗𝑘 .
(2) 𝑞𝑖 is in cluster 𝑘 but 𝑐𝑖󸀠𝑗𝑘 ≤ 𝑐𝑖𝑗𝑘 . Since 𝑁𝑖 ∩ 𝑁𝑖󸀠 ̸= 0,

queries 𝑞𝑖 and 𝑞𝑖󸀠 share some replica in common. By
triangle inequality we have 𝑐𝑖󸀠𝑗 ≤ 𝑐𝑖𝑗𝑘 + 𝑐𝑖𝑗 + 𝑐𝑖󸀠𝑗𝑘 ≤𝐶𝑖 +2𝐶𝑖󸀠 ≤ 3𝐶𝑖󸀠 . The last inequality is because we sort𝐶𝑖 in ascending order and pick the querywith smallest𝐶𝑖 each time.

(3) 𝑞𝑖 is not in cluster 𝑘; in this case, we set 𝑐𝑖𝑗𝑘 to∞ and𝑞𝑖 will not be queried on any replica in this cluster.

10 Wireless Communications and Mobile Computing

w(q)

w(map)

h(q)

h(map)
w(q)

h(q)

Figure 3: An example of the distribution of queries in this paper.

The total cost of the rounding solution is

𝜌 (𝑊, 𝑅) = 𝑛∑
𝑖=1

𝑚∑
𝑗=1

𝑤𝑖 ⋅ 𝑐𝑖𝑗 ⋅ 𝑦𝑖𝑗 ≤ 3 ⋅
𝑛∑
𝑖=1

𝑤𝑖𝐶𝑖 = 3 ⋅ Θ1, (27)

which is at most triple cost of the LP.

5. Query Cost Estimation

In this section, we propose an effective model to estimate the
query cost for the replica selection problem.

We estimate the cost of a query with respect to a replica
via the expectation of the running time towards the replica.
Since each partition 𝑝 of a replica 𝑟 consists of a spatial range𝑆(𝑝) and a temporal range𝑇(𝑝), we will show our estimations
of the query cost in both spatial and temporal aspects.

As defined in Definition 6, in this paper, we consider 𝑞
as a cuboid and we use 𝜇(𝑞) to denote the spatial-temporal
range of 𝑞, i.e., ⟨𝑥, 𝑦, 𝑡, 𝛿𝑥, 𝛿𝑦, 𝛿𝑡⟩. To clearly show the proof,
in this section, we use 𝑆(𝑞) to denote the spatial range of 𝑞,
where 𝑆(𝑞) = ⟨𝑥, 𝑦, 𝑤, ℎ⟩, ⟨𝑥, 𝑦⟩ is the top-left point of the
rectangle and 𝑤(𝑞) and ℎ(𝑞) are the width and the height of
the rectangle, respectively. Similarly, for each partition 𝑝 ∈𝑃(𝑟), we use𝑤(𝑝) and ℎ(𝑝) to denote thewidth and the height
of the partition.

To clearly address the expected partitions that a query
should scan, we consider the queries are uniformly dis-
tributed in the space, as shown in Figure 3. In Figure 3, 𝑤(𝐷)
and ℎ(𝐷) are the width and height of the map, respectively.
The query is shown as a blue rectangle, and the top-left
point of the query is only allowed to be generated in the
gray area, because if a query exceeds the spatial range of the
map, such query can be considered as another query with a
smaller spatial range. The probabilities of the top-left point
being anywhere of the gray area are the same, i.e., uniformly
distributed.

5.1. Expected Spatial Partitions. In this paper, given a work-
load 𝑊, the probability of a spatial partition being scanned
is clearly the quotient of the number of queries overlapped
with the partition, being divided by the total number of
queries in𝑊. Since the queries are uniformly distributed, the
probability can be written as the quotient of the area within
which the queries may overlap with the partition (the orange

rectangle in Figure 4), being divided by the entire area that all
the queries belong to (the gray area in Figure 3).

Assuming the distances between a partition 𝑝 and the
boundary of the map are west(𝑝), 𝑒𝑎𝑠𝑡(𝑝), 𝑛𝑜𝑟𝑡ℎ(𝑝), and𝑠𝑜𝑢𝑡ℎ(𝑝), we define the expected spatial partitions as follows.
Theorem 11 (expected spatial partitions). Given query 𝑞 and
replica 𝑟 with partitions 𝑝 ∈ 𝑃(𝑟), the expected number of
spatial partitions 𝜀𝑠(𝑞, 𝑟) that the query should scan is

𝜀𝑠 (𝑞, 𝑟) = ∑
𝑝∈𝑃(𝑟)

𝜀𝑠 (𝑞, 𝑝) , (28)

where

𝜀𝑠 (𝑞, 𝑝)
= (𝑤 (𝑞) + 𝑤 (𝑝) − 𝑤 (𝛼)) ⋅ (ℎ (𝑞) + ℎ (𝑝) − ℎ (𝛼))(𝑤 (𝐷) − 𝑤 (𝑞)) ⋅ (ℎ (𝐷) − ℎ (𝑞)) , (29)

where 𝛼 is the offset of the query, and
𝑤 (𝛼) = max (0, 𝑤 (𝑞) − west (𝑝))

+max (0, 𝑤 (𝑞) − 𝑒𝑎𝑠𝑡 (𝑝)) ,
ℎ (𝛼) = max (0, ℎ (𝑞) − 𝑛𝑜𝑟𝑡ℎ (𝑝))

+max (0, ℎ (𝑞) − 𝑠𝑜𝑢𝑡ℎ (𝑝)) .
(30)

Proof. The proof of the denominator of 𝜀𝑠(𝑞, 𝑝) is trivial; thus
we only consider the numerator, denoted by 𝑆; i.e., the area
within which the queries may overlap with the partition as
shown in Figure 4. In Figure 4, the query is colored in blue,
and the partition is colored in purple. The orange rectangle
shows the area within which the queries may overlap with the
partition.

(1) The area of the partition is smaller than the query, as
shown in Figure 4(a). From observation, we have 𝑆 =(𝑤(𝑞) + 𝑤(𝑝)) ⋅ (ℎ(𝑞) + ℎ(𝑝)), and 𝑤(𝑎) = ℎ(𝑎) = 0.
HenceTheorem 11 holds.

(2) The area of the partition is larger than the query,
as shown in Figure 4(b). Similar to the previous
situation, Theorem 11 holds.

(3) The partition is in the corner and exceeds the legal
range of the query, as shown in Figure 4(c). From
observation, we have 𝑆 = (𝑤(𝑞)+𝑤(𝑝)−𝑤(𝑎))⋅(ℎ(𝑞)+ℎ(𝑝) − ℎ(𝑎)). HenceTheorem 11 holds.

(4) The partition is adjacent to the boundary, as shown in
Figure 4(d). From observation, we have 𝑆 = (𝑤(𝑞) +𝑤(𝑝))⋅(ℎ(𝑞)+ℎ(𝑝)−ℎ(𝑞)) = (𝑤(𝑞)+𝑤(𝑝))⋅ℎ(𝑝), sinceℎ(𝑞)+ℎ(𝑝)−ℎ(𝑎) = ℎ(𝑞)+ℎ(𝑝)−0−(ℎ(𝑞)−0) = ℎ(𝑝);
Theorem 11 holds.

(5) The partition is adjacent to more than two bound-
aries.This is not possible based on the spatial partition
scheme, because the number of partitions ≥ 4.

In conclusion, Theorem 11 holds.

Wireless Communications and Mobile Computing 11

(a) Partition is smaller than the query (b) Partition is larger than the query

(c) Partition exceeds the legal range of
the query

(d) Partition is adjacent to the bound-
ary

Figure 4: Different situations when calculating 𝜀𝑠(𝑞, 𝑝).

5.2. Expected Temporal Partitions. Similar to the expected
spatial partitions, the probability of a temporal partition
being scanned is the quotient of the temporal range within
which the queries may overlap with the partition, being
divided by the temporal range that all the queries belong
to. Assuming the intervals between a partition 𝑝 and the
temporal range of all the records 𝑇(𝐷) are 𝑡𝑜𝑝(𝑝) and 𝑏𝑜𝑡(𝑝),
we define the expected temporal partitions as follows.

Theorem 12 (expected spatial partitions). Given query 𝑞 and
replica 𝑟 with partitions 𝑝 ∈ 𝑃(𝑟), the expected number of
temporal partitions 𝜀𝑡(𝑞, 𝑟) that the query should scan is

𝜀𝑡 (𝑞, 𝑟) = ∑
𝑝∈𝑃(𝑟)

𝜀𝑡 (𝑞, 𝑝) , (31)

where

𝜀𝑡 (𝑞, 𝑝) = 𝑇 (𝑞) + 𝑇 (𝑝) − 𝑇 (𝛼)𝑇 (𝐷) − 𝑇 (𝑞) , (32)

where 𝛼 is the offset of the query, and
𝑇 (𝛼) = max (0, 𝑇 (𝑞) − 𝑡𝑜𝑝 (𝑝))

+max (0, 𝑇 (𝑞) − 𝑏𝑜𝑡 (𝑝)) . (33)

The proof of Theorem 12 is similar to Theorem 11.

5.3. Expected Query Cost. As described in Section 3, to
answer query 𝑞 on replica 𝑟, a BLOT system scans (the
physically stored objects of) all partitions 𝑝 ∈ 𝑃(𝑟) that
satisfies 𝜇(𝑝) ∩ 𝜇(𝑞) ̸= 0 and then filters each record by𝜇(𝑞). Based on the expected number of spatial and temporal

partitions that a query should scan, we can combine them as
the expectation of desired partitions given query 𝑞:

𝜀 (𝑞, 𝑟) = ∑
𝑝∈𝑃(𝑟)

𝜀𝑠 (𝑞, 𝑝) ⋅ 𝜀𝑡 (𝑞, 𝑝) . (34)

Now given the number of spatial and temporal partitions𝑛𝑠 and 𝑛𝑡 of 𝑃(𝑟), respectively, we have
𝜌 (𝑞, 𝑟) = 𝜀 (𝑞, 𝑟) ⋅ (𝜂 (𝑟)

𝑛𝑠 ⋅ 𝑛𝑡 ⋅ 𝜁 (𝑟) + 𝜉 (𝑟)) (35)

where 𝜁(𝑟) and 𝜉(𝑟) are the scanning speed in terms of
number of records scanned per unit time and the time before
and after the actual scan process of the replica given its
encoding scheme 𝐸(𝑟), respectively. For example, if each
partition is stored continuously as a regular file on a local
disk, then 𝜉(𝑟) is the seek time of locating the beginning of
the file and 𝜁(𝑟) is the transfer rate of the disk (assuming
that CPU always waits for I/O). As another example, if each
partition is stored as an object on Amazon S3 and queries are
processed on Amazon EMR (Elastic MapReduce), then 𝜉(𝑟)
is the time initializing the map task plus the time locating
the S3 object before scanning the partition. The value of 𝜁(𝑟)
depends on the encoding scheme 𝐸(𝑟). In real situations, a
high compression ratio generally leads to a slow scan speed.

In this paper, we assume that all candidate partitioning
schemes will generate non-skewed data partitions. In other
words, the number of records in each 𝐷(𝑝𝑖) is almost the
same for all 𝑝𝑖 ∈ 𝑃(𝑟). Non-skewed partitioning is a desirable
property when partitions are processed in parallel (e.g., in
MapReduce). An example of such partitioning schemes is
using a k-d tree to partition the space where data are split
equally each time the space is subdivided.

12 Wireless Communications and Mobile Computing

Table 2: Compression ratio of encoding schemes.

Uncompressed Snappy GZip LZMA2
Row Col Row Col Row Col Row Col
1 0.557 0.485 0.312 0.283 0.179 0.213 0.156

Putting (34) and (35) together, we can compute the cost
of any query on replica 𝑟 in 𝑂(|𝑃(𝑟)|) time. It follows that the
time complexity of computing all query costs is

𝑂(|𝑊| ⋅ |𝑅| ⋅max
𝑟𝑗∈𝑅

󵄨󵄨󵄨󵄨󵄨𝑃 (𝑟𝑗)󵄨󵄨󵄨󵄨󵄨) . (36)

6. Evaluation

In this section, we describe the experiment settings and
present the evaluation results in detail.

6.1. Experiment Settings. We consider two typical execution
environments for BLOT systems. The first one is a local
Hadoop clusterwhere each partition is stored as a separate file
onHDFS.The second one uses Amazon S3 to store partitions.
To process a query, we lunch a map-only MapReduce job,
either in local cluster or in Amazon EMR, with each mapper
scanning exactly one of the involved partitions. The dataset
we use is a sample of vehicle GPS log collected from more
than 4,000 taxis in Shanghai during a month. Each record
contains 8 attributes (including the 3 core attributes). The
total number of records is around 65 million and the total
storage size in uncompressed CSV format is 3.7 GB. The
latitude ranges from 30 to 32, longitude from 120 to 122, and
time from 11/01/2007 to 11/29/2007. It is worth pointing out
that though the full dataset in our working system is more
than 100GB, we only need a small portion of the data to
build the cost model and select diverse replicas for the whole
dataset.

For data partitioning, we first partition the space and
then the time to generate equal-sized (in terms of number
of records) partitions. The space is partitioned according to
a k-d tree [9] index which recursively decomposes the space
by alternatively using each space dimension. The number of
spatial partitions is chosen from 42, 43, 44, 45, 46 and the
number of temporal partitions is chosen from 24, 25, 26, 27, 28.
Therefore, there are 5 × 5 = 25 candidate spatial-temporal
partitioning schemes in total. For data encoding, we store
data either by row or by column (with delta encoding), with
an option of whether or not using a general compression
method chosen from Gzip, Snappy, and LZMA2. Since
uncompressed column-store has poor performance in terms
of both compression ratio and scan speed, we do not use it as a
candidate encoding scheme.Therefore, there are 2 × 4−1 = 7
candidate encoding schemes in total. The compression ratio
of each encoding schemes measured on our dataset is listed
in Table 2. Putting the above partitioning schemes and the
encoding schemes together, the total number of candidate
replicas is 25 × 7 = 150.

6.2. Measuring Scan Rate and Extra Time. Since 𝜁 and 𝜉 are
constants with respect to encoding schemes, we conduct 7 ×2 = 14measurements corresponding to 7 candidate encoding
schemes in each execution environments, respectively.

For each measurement, we generate 5 sets of partitions
with each set containing 20 partitions. The sizes of partitions
within a partition set are the same while they are different
across partition sets. We then launch amap-onlyMapReduce
job with 20 mappers with each scanning a partition. After
the job is finished, we compute the average processing time
of all mappers and use it as the (measured) value of 𝜌(𝑞, 𝑝)
in (34). Accordingly, we use the corresponding partition size
(in terms of number of records) as 𝜂(𝑟). We therefore have
5 measured points for (35). In the last step, we perform
linear regression to fit the measured points and use the fitted
parameters as 1/𝜁 and 𝜉.

In Figure 5, the left two subfigures show all the mea-
surement results and the right two subfigures show the
fitted lines for three measurements in each of the execution
environments. In addition, themeasured values of 𝜁 and 𝜉 are
listed in Table 3. We can see that 𝜌(𝑞, 𝑝) is well-fitted by (35)
especially when the size of partition is relatively large, which
demonstrates the effectiveness of our cost model.

6.3. Performance of Replica Selection. To measure the effec-
tiveness and the efficiency of our replica selection algorithms,
we construct a synthetic workload containing 8 grouped
queries with wildly varied range size. We conduct all the
following experiments in the Amazon S3 and EMR execution
environment.

Figure 6 compares the computation time via MIP upon
different sizes of workload and candidate replicas. When the
size of the given workload or candidate replica set increases,
we can see that the computation time of the MIP solution
increases exponentially. Hence, when the input workload or
the candidate replica set is too large, it is desirable to switch
to the greedy algorithm which runs in polynomial time.

Figure 7 compares the relative query performance for
all the queries when the replica set is selected by different
approaches. The storage budget is set to be the same as the
storage size of 3 exact copies of the optimal single replica.
The approximation ratio of each approach is shown in the
brackets of the figure (ideal case is always 1.00). It is clear that
when the size of data grows, the performance of the greedy
algorithm and the MIP solution is closer to the ideal case
than a single replica; thus the advantages of using diverse
replicas become more and more prominent. Figure 8 shows
the overall query performance relative to the ideal case when
varying the storage budget. In this figure, the x-coordinate
is the storage budget relative to the storage budget used in
Figure 7.We can see that when theMIP solution is close to the
ideal case regardless of the storage budget, which is faster than

Wireless Communications and Mobile Computing 13

ROW/PLAIN
ROW/GZIP
ROW/LZMA2
ROW/SNAPPY

COL/SNAPPY
COL/LZMA2
COL/GZIP

25

30

35

40

45

50

55

60

65

70
Co

st(
q,

p)
 (s

)

2 4 6 8 10 12 140
Partition size ＄(Ｊ)

 × 105

(a) Amazon S3

ROW/PLAIN
ROW/GZIP
ROW/LZMA2
ROW/SNAPPY

COL/SNAPPY
COL/LZMA2
COL/GZIP

4

6

8

10

12

14

Co
st(

q,
p)

 (s
)

2 4 6 8 10 12 140
Partition size ＄(Ｊ)

 × 105

(b) Local Hadoop cluster

ROW/PLAIN
ROW/GZIP
COL/LZMA2

2 4 6 8 10 12 140
Partition size ＄(Ｊ)



25

30

35

40

45

50

55

60

65

70

Co
st(

q,
p)

 (s
)

× 105

(c) Amazon S3 (fitted)

ROW/PLAIN
ROW/GZIP
COL/LZMA2

× 105

4

6

8

10

12

14

Co
st(

q,
p)

 (s
)

2 4 6 8 10 12 140
Partition size |D(p)|

(d) Local Hadoop cluster (fitted)

Figure 5: Measurement results of 𝜌(𝑞, 𝑝).

the single replica case by up to 80%, the approximation ratio
of the greedy algorithm decreases dramatically as the storage
budget increases. When the relative storage budget is greater
than 1, the approximation ratio of the greedy algorithm is less
than 1.2.

7. Conclusion

In this paper, we explore the use of diverse replicas in the
context of storage systems for big location-based mobile

data. Specifically, we propose BLOT, a system abstraction
that describes an important class of location-based mobile
data storage systems. Then, we formally define the replica
selection problem that finds the optimal set of diverse
replicas. We propose two solutions to address this problem,
including an exact algorithm based on integer programming
and an approximation algorithm based on greedy strategy.
In addition, we propose several practical approaches to
reduce the input size of the problem. We also design a
simple yet effective cost model to estimate the cost of

14 Wireless Communications and Mobile Computing

Table 3: Measured 𝜁 and 𝜉.
Amazon S3 and EMR

1/𝜁 (ms) 𝜉 (ms)

Uncompressed Row 85.02 32689
Col N/A N/A

Snappy Row 90.24 30187
Col 56.98 30518

Gzip Row 90.65 28698
Col 51.72 28725

LZMA2 Row 54.39 29029
Col 38.69 29609

Local Hadoop Cluster
1/𝜁 (ms) 𝜉 (ms)

Uncompressed Row 606.78 5312
Col N/A N/A

Snappy Row 598.84 5316
Col 175.75 4150

Gzip Row 488.32 5349
Col 177.15 4427

LZMA2 Row 265.41 5244
Col 159.98 4551

of replicas = 4
of replicas = 12
of replicas = 20

0

0.5

1

1.5

2

2.5

Ru
nn

in
g

tim
e (

m
s)

100 150 200 250 30050
of queries

× 105

(a) Varying size of workload

of queries = 100
of queries = 200
of queries = 300

0

0.5

1

1.5

2

2.5

Ru
nn

in
g

tim
e (

m
s)

10 15 205
of replicas

× 105

(b) Varying size of candidate replicas

Figure 6: Comparison of the computation speed of MIP.

Wireless Communications and Mobile Computing 15

Single (1.02)
Greedy (1.00)

MIP (1.00)
Ideal

0

1

2

3

4

5

6
W

ei
gh

te
d

co
st

(s
)

q2 q3 q4 q5 q6 q7 q8q1
Query

× 104

(a) Data size: 3.7 GB

Single (1.39)
Greedy (1.03)

MIP (1.03)
Ideal

0

2

4

6

8

10

W
ei

gh
te

d
co

st
(s

)

q2 q3 q4 q5 q6 q7 q8q1
Query

× 104

(b) Data size: 37 GB

q1 q2 q3 q4 q5 q6 q7 q8
Query

Single (1.86)
Greedy (1.33)

MIP (1.08)
Ideal

0

0.5

1

1.5

2

W
ei

gh
te

d
co

st
(s

)

× 105

(c) Data size: 370 GB

Single (1.78)
Greedy (1.49)

MIP (1.06)
Ideal

0

2

4

6

8

10

12

W
ei

gh
te

d
co

st
(s

)

q2 q3 q4 q5 q6 q7 q8q1
Query

× 105

(d) Data size: 3,700 GB

Figure 7: Relative overall query performance in Amazon S3 and EMR.

an arbitrary query on an arbitrary replica configuration.
Finally, we evaluate our solutions using two typical execution
environments including Amazon and local Hadoop cluster.
The results demonstrate that the proposed algorithms for
the replica selection problem is both effective and efficient.
In this paper, we only consider full replication of the entire
data. The use of partial replication, where only frequently
accessed data ranges are replicated, is one of our future
work.

Data Availability

The data used to support the findings of this study are
available from the corresponding author upon request.

Disclosure

An earlier version of this work appeared in the Proceedings
of IEEE ICDCS [36], June 2014.

16 Wireless Communications and Mobile Computing

Single
Greedy

MIP
Ideal

0.5

1

1.5

2

2.5

3

3.5

Re
lat

iv
e o

ve
ra

ll
qu

er
y

co
st

0.5 0.670.33
Relative storage budget

Figure 8: Relative overall query performance of different storage
budgets.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This work is supported in part by the National Key Research
and Development Program of China under Grant no.
2017YFB0202201 andNationalNatural Science Foundation of
China under Grant no. U1711261.

References

[1] A. Doshi and M. M. Trivedi, “Tactical driver behavior pre-
diction and intent inference: A review,” in Proceedings of the
14th International IEEE Conference on Intelligent Transportation
Systems, ITSC 2011, pp. 1892–1897, Washington, DC, USA, 2011.

[2] Y. Ding, J. Zheng, H. Tan, W. Luo, and L. M. Ni, “Inferring
road type in crowdsourced map services,” DASFAA, pp. 392–
406, 2014.

[3] Y. Ding, S. Liu, J. Pu, and L. M. Ni, “Hunts: A trajectory
recommendation system for effective and efficient hunting of
taxi passengers,”MDM, pp. 107–116, 2013.

[4] W. Luo, H. Tan, L. Chen, and L. M. Ni, “Finding time period-
based most frequent path in big trajectory data,” SIGMOD, pp.
713–724, 2013.

[5] C. S. Jensen, H. Lu, and B. Yang, “Geolife: A collaborative social
networking service among user, location and trajectory,” IEEE
Data Eng. Bull, vol. 33, no. 2, pp. 12–17, 2010.

[6] P. Cudre-Mauroux, E. Wu, and S. Madden, “Trajstore: An
adaptive storage system for very large trajectory data sets,”
ICDE, pp. 109–120, 2010.

[7] H. Tan, W. Luo, and L. M. Ni, “Clost: A hadoop-based storage
system for big spatio-temporal data analytics,” CIKM, pp. 2139–
2143, 2012.

[8] A. M. Hendawi and M. F. Mokbel, “Panda: a predictive spatio-
temporal query processor,” in Proceedings of the SIGSPA-
TIAL 2012 International Conference on Advances in Geographic
Information Systems (formerly known as GIS), SIGSPATIAL’12,
Redondo Beach, vol. 2012, pp. 13–22, CA, USA, 2012.

[9] J. L. Bentley, “Multidimensional binary search trees used for
associative searching,” Communications of the ACM, vol. 18, no.
9, pp. 509–517, 1975.

[10] H. Samet, “The quadtree and related hierarchical data struc-
tures,”ACMComputing Surveys, vol. 16, no. 2, pp. 187–260, 1984.

[11] A. Guttman, “R-trees: a dynamic index structure for spatial
searching,” SIGMOD, pp. 47–57, 1984.

[12] D. Pfoser, C. S. Jensen, and Y. Theodoridis, “Novel approaches
in query processing for moving object trajectories,” VLDB, pp.
395–406, 2000.

[13] V. Botea, D.Mallett, M. A. Nascimento, and J. Sander, “PIST: An
efficient and practical indexing technique for historical spatio-
temporal point data,”GeoInformatica, vol. 12, no. 2, pp. 143–168,
2008.

[14] A. Eldawy and M. F. Mokbel, “A demonstration of spatial-
hadoop: An efficient mapreduce framework for spatial data,”
PVLDB, vol. 6, no. 2, 2013.

[15] H. Vo, A. Aji, and F. Wang, “SATO: a spatial data partitioning
framework for scalable query processing,” in Proceedings of the
22nd ACM SIGSPATIAL International Conference on Advances
inGeographic Information Systems, Dallas/FortWorth, vol. 2014,
pp. 545–548, TX, USA, 2014.

[16] S. Khoshafian, G. Copeland, T. Jagodits, H. Boral, and P.
Valduriez, “A query processing strategy for the decomposed
storage model,” ICDE, pp. 636–643, 1987.

[17] N. Bruno and S. Chaudhuri, “Constrained physical design
tuning,” PVLDB, vol. 1, no. 1, pp. 4–15, 2008.

[18] D. Dash, N. Polyzotis, and A. Ailamaki, “Cophy: A scalable,
portable, and interactive index advisor for large workloads,”
PVLDB, vol. 4, no. 6, pp. 362–372, 2011.

[19] H. Kimura, G. Huo, A. Rasin, S. Madden, and S. B. Zdonik,
“Coradd: Correlation aware database designer for materialized
views and indexes,” PVLDB, vol. 3, no. 1, pp. 1103–1113, 2010.

[20] A. Jindal, J.-A. Quiané-Ruiz, and J. Dittrich, “Trojan data
Layouts: Right shoes for a running elephant,” SOCC, p. 21, 2011.

[21] M. P. Consens, K. Ioannidou, J. Lefevre, and N. Polyzotis,
“Divergent physical design tuning for replicated databases,”
SIGMOD, pp. 49–60, 2012.

[22] J. Chen, K. Hu, Q.Wang, Y. Sun, Z. Shi, and S. He, “Narrowband
Internet of Things: Implementations and Applications,” IEEE
Internet of Things Journal, vol. 4, no. 6, pp. 2309–2314, 2017.

[23] L. Wang, X. Qi, J. Xiao, K. Wu, M. Hamdi, and Q. Zhang,
“Exploring Smart Pilot for Wireless Rate Adaptation,” IEEE
Transactions on Wireless Communications, vol. 15, no. 7, pp.
4571–4582, 2016.

[24] R. Ramamurthy, D. J. DeWitt, and Q. Su, “A case for fractured
mirrors,” VLDB, pp. 430–441, 2002.

[25] D. Sacca andG.Wiederhold, “Database Partitioning in aCluster
of Processors,” ACM Transactions on Database Systems, vol. 10,
no. 1, pp. 29–56, 1985.

[26] S. Agrawal, V. Narasayya, and B. Yang, “Integrating vertical
and horizontal partitioning into automated physical database
design,” SIGMOD, pp. 359–370, 2004.

[27] M. Grund, J. Krüger, H. Plattner, A. Zeier, P. Cudre-Mauroux,
and S. Madden, “Hyrise - a main memory hybrid storage
engine,” PVLDB, vol. 4, no. 2, pp. 105–116, 2010.

Wireless Communications and Mobile Computing 17

[28] R. A. Hankins and J. M. Patel, “Data morphing: An adaptive,
cache-conscious storage technique,” VLDB, pp. 417–428, 2003.

[29] S. Navathe, S. Ceri, G. Wiederhold, and J. Dou, “Vertical Parti-
tioning Algorithms for Database Design,”ACMTransactions on
Database Systems, vol. 9, no. 4, pp. 680–710, 1984.

[30] Y. Tong, L. Chen, Z. Zhou, H. V. Jagadish, L. Shou, and W. Lv,
“Slade: a smart large-scale task decomposer in crowdsourcing,”
IEEE Transactions on Knowledge and Data Engineering, 2018.

[31] S. Chaudhuri, A. K. Gupta, and V. Narasayya, “Compressing sql
workloads,” SIGMOD, pp. 488–499, 2002.

[32] J. M. Kleinberg and É. Tardos, Algorithm Design, Addison-
Wesley, 2006.

[33] R. J. Dakin, “A tree-search algorithm for mixed integer pro-
gramming problems,” The Computer Journal, vol. 8, no. 3, pp.
250–255, 1965.

[34] M. Charikar, S. Guha, É. Tardos, andD. B. Shmoys, “A constant-
factor approximation algorithm for the k-median problem,”
Journal of Computer and System Sciences, vol. 65, no. 1, pp. 129–
149, 2002.

[35] J.-H. Lin and J. S. Vitter, “Approximation algorithms for geo-
metric median problems,” Information Processing Letters, vol.
44, no. 5, pp. 245–249, 1992.

[36] Y. Ding, H. Tan, W. Luo, and L. M. Ni, “Exploring the use of
diverse replicas for big location tracking data,” in Proceedings of
the IEEE 34th International Conference on Distributed Comput-
ing Systems, ICDCS 2014, pp. 83–92, 2014.

International Journal of

Aerospace
Engineering
Hindawi
www.hindawi.com Volume 2018

Robotics
Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

 Active and Passive
Electronic Components

VLSI Design

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Shock and Vibration

Hindawi
www.hindawi.com Volume 2018

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Electrical and Computer
Engineering

Journal of

Advances in
OptoElectronics

Hindawi
www.hindawi.com

Volume 2018

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013
Hindawi
www.hindawi.com

The Scientific
World Journal

Volume 2018

Control Science
and Engineering

Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com

 Journal ofEngineering
Volume 2018

Sensors
Journal of

Hindawi
www.hindawi.com Volume 2018

International Journal of

Rotating
Machinery

Hindawi
www.hindawi.com Volume 2018

Modelling &
Simulation
in Engineering
Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Navigation and
 Observation

International Journal of

Hindawi

www.hindawi.com Volume 2018

 Advances in

Multimedia

Submit your manuscripts at
www.hindawi.com

https://www.hindawi.com/journals/ijae/
https://www.hindawi.com/journals/jr/
https://www.hindawi.com/journals/apec/
https://www.hindawi.com/journals/vlsi/
https://www.hindawi.com/journals/sv/
https://www.hindawi.com/journals/ace/
https://www.hindawi.com/journals/aav/
https://www.hindawi.com/journals/jece/
https://www.hindawi.com/journals/aoe/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/jcse/
https://www.hindawi.com/journals/je/
https://www.hindawi.com/journals/js/
https://www.hindawi.com/journals/ijrm/
https://www.hindawi.com/journals/mse/
https://www.hindawi.com/journals/ijce/
https://www.hindawi.com/journals/ijap/
https://www.hindawi.com/journals/ijno/
https://www.hindawi.com/journals/am/
https://www.hindawi.com/
https://www.hindawi.com/

